Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A surprising makeover turns an ordinary protein into a magnetic sculptor

Abstract:
By studying an unusual group of magnetic microorganisms, scientists at UC Berkeley have uncovered a new and unexpected function for a ubiquitous protein family. Proteases are workhorse enzymes found in all living organisms that act in general cellular maintenance and communication by chewing up proteins. In a paper publishing in the Open Access journal PLOS Biology on March 16th 2016, the Komeili lab, along with collaborators in the Hurley and Chang groups, have now shown that a bacterial protein called MamO has been transformed from a common protease to an inactive enzyme that helps to build magnetic nanoparticles using a novel metal-binding motif.

A surprising makeover turns an ordinary protein into a magnetic sculptor

San Francisco, CA | Posted on March 17th, 2016

Many organisms, ranging from mammals to small single-celled algae, add functionality to their cells through the construction of elaborate three-dimensional minerals. The products of these "biomineralization" processes are of great interest in both basic and industrial settings. "We would like to know how minerals are built in nature since they constitute a fundamental survival strategy for many organisms," said Dr. Komeili. In addition, scientists are interested in mimicking natural biomineralization systems to design customized nanoparticles for use in a number of applications. In order to study the biological control of mineral production, Komeili and his team have been studying how a group of microorganisms, called magnetotactic bacteria, makes chains of magnetic crystals that allow the cells to swim along the earth's geomagnetic field. Their study focuses on Magnetospirillum magneticum AMB-1, a bacterium that builds small compartments called magnetosomes, which house the machinery for crystallizing iron atoms to make magnetite. Komeili's group knew that two proteins, MamE and MamO, are required at the earliest stages of mineral formation in AMB-1. Based on predicted similarities to known enzymes in the DNA sequences for each gene, both proteins had been designated as proteases.

In an effort to understand details about how the protein works, David Hershey, a graduate student in the Komeili lab, wanted to understand the precise architecture and activity of MamO. They used X-ray crystallography to define the atomic structure of MamO. At first glance, MamO adopts a shape that is quite similar to that of other proteases. But by examining the structure more closely, Hershey and his colleagues found that MamO is riddled with changes that show it has lost the ability to perform its protease function. Instead, they discovered that MamO has an unexpected metal-binding activity that is required for AMB-1 to make magnetic crystals. Their results show that this ancient protease scaffold has been transformed into a novel metal-binding feature. Surprisingly, they found that a process similar to the one discovered in AMB-1 has occurred in all major groups of magnetotactic bacteria. Using the motifs they identified in MamO, they show that the genomes of these very diverse species also have inactive proteases. By tracing their evolutionary trajectory they found that the inactive proteases have arisen numerous times throughout the evolution of magnetosomes by convergent evolution. "We really thought that something this unusual would have evolved only once. That just isn't the case. It really just cements how unusual this process is," says David Hershey. Komeili and his team think that dramatic changes to the environment in the distant past provided the selective pressure that necessitated the presence of inactive proteases for formation of magnetic nanoparticles.

The unexpected findings on the structure, activity and evolution of MamO has set the stage for a whole host of future explorations of biomineralization. Komeili's group wants to continue to investigate the precise role of metal-binding by MamO in biomineralization. Does MamO directly sequester iron to build the nucleus of the magnetic crystals? Or, does it act as a monitoring system for the local magnetosome environment, initiating biomineralization at the appropriate time? More broadly, Dr. Komeili hopes that the metal-binding activity of MamO can be exploited to produce magnetic particles synthetically using a simplified chemical system.

Funding: DMH and AK are supported by grants from the National Institutes of Health R01GM084122 and the Office of Naval Research N000141310421. Beamline 8.3.1 at the Advanced Light Source, LBNL, is supported by the UC Office of the President, Multicampus Research Programs and Initiatives grant MR?15?328599 and the Program for Breakthrough Biomedical Research, which is partially funded by the Sandler Foundation. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

####

For more information, please click here

Contacts:
PLOS Biology


Arash Komeili


Karyn Houston

Copyright © PLOS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Citation: Hershey DM, Ren X, Melnyk RA, Browne PJ, Ozyamak E, Jones SR, et al. (2016) MamO Is a Repurposed Serine Protease that Promotes Magnetite Biomineralization through Direct Transition Metal Binding in Magnetotactic Bacteria. PLoS Biol 14(3): e1002402. doi:10.1371/journal.pbio.1002402:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Magnetism/Magnons

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project