Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Drug-loaded nanocarriers in tumor targeted drug delivery: Nanoparticulate delivery systems in cancer therapies provide better penetration of therapeutic and diagnostic substances with the cancerous tissue in comparison to conventional cancer therapies

Abstract:
Cancer is a group of diseases characterized by the uncontrolled growth and spread of abnormal cells. It is a leading cause of death and the burden is expected to grow worldwide due to the growth and aging of the population, mainly in less developed countries, in which about 82% of the world's population resides. By 2030, the global burden is expected to grow to 21.7 million new cancer cases and 13 million cancer deaths simply due to the growth and aging of the population. Current cancer therapy approaches are based in surgery, radiotherapy and chemotherapy, being the chemotherapy the one that shows the greater efficiency for cancer treatment, mainly in more advanced stages. A major problem with this conventional chemotherapy is its toxicity and it also destroys healthy tissues resulting in systemic toxicity besides beneficial characteristics of killing cancer cells. Anticancer drugs also destroy healthy tissues resulting in systemic toxicity.

Drug-loaded nanocarriers in tumor targeted drug delivery: Nanoparticulate delivery systems in cancer therapies provide better penetration of therapeutic and diagnostic substances with the cancerous tissue in comparison to conventional cancer therapies

Sharjah, U.A.E. | Posted on March 10th, 2016

A possible solution to avoid these adverse influences is targeted drug delivery, which is a safer mode of delivering the medication at the desired site of its action in increased concentrations compared to other sites for maximal beneficial effect. The extremely small size of nanoparticles makes it advantageous and potentially superior to use for targeted drug delivery. In addition, these nanoparticle platforms allow for selective targeting of cancer cells or tumor vessels either by incorporating novel or standard anticancer drugs and/or the delivery of therapeutic genetic modulators.

The review article published in 'Current Biotechnology' entitled "Drug-Loaded Nanocarriers in Tumor Targeted Drug Delivery" will allow to gain a more general view of the various drug loaded nanocarriers which offers a predominantly unique set of chemical, physical and photonic properties for better drug delivery to the tumor tissues based on morphological and functional differences between normal and tumor tissues.

####

For more information, please click here

Contacts:
Faizan ul Haq

Copyright © Bentham Science Publishers

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cancer

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project