Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 'Bending current' opens up the way for a new type of magnetic memory: Eindhoven physicists describe energy-efficient MRAM in Nature Communications

This image shows the experimental chip the researchers used for their measurements.
CREDIT: Arno van den Brink / Eindhoven University of Technology
This image shows the experimental chip the researchers used for their measurements.

CREDIT: Arno van den Brink / Eindhoven University of Technology

Abstract:
Use your computer without the need to start it up: a new type of magnetic memory makes it possible. This 'MRAM' is faster, more efficient and robust than other kinds of data storage. However, switching bits still requires too much electrical power to make large-scale application practicable. Researchers at Eindhoven University of Technology (TU/e) have discovered a smart way of solving this problem by using a 'bending current'. They publish their findings today in the journal Nature Communications.

'Bending current' opens up the way for a new type of magnetic memory: Eindhoven physicists describe energy-efficient MRAM in Nature Communications

Eindhoven, the Netherlands | Posted on March 8th, 2016

MRAM (Magnetic Random Access Memory) stores data by making smart use of the 'spin' of electrons, a kind of internal compass of the particles. Since magnetism is used instead of an electrical charge, the memory is permanent, even when there is a power failure, and so the computer no longer has to be started up. These magnetic memories also use much less power, which means that mobile phones, for example, can run longer on a battery.

Flipover

In a MRAM bits are projected by the direction of the spin of the electrons in a piece of magnetic material: for example, upwards for a '1' and downwards for a '0'. The storage of data occurs by flipping the spin of the electrons over to the correct side. Normal practice is to send an electrical current which contains electrons with the required spin direction through the bit. The large quantity of electrical current needed to do this hindered a definitive breakthrough for MRAM, which appeared on the market for the first time in 2006.

Bending current

In Nature Communications a group of TU/e physicists, led by professor Henk Swagten, today publishes a revolutionary method to flip the magnetic bits faster and more energy-efficiently. A current pulse is sent under the bit, which bends the electrons at the correct spin upwards, so through the bit. "It's a bit like a soccer ball that is kicked with a curve when the right effect is applied," says Arno van den Brink, TU/e PhD student and the first author of the article.

Frozen

The new memory is really fast but it needs something extra to make the flipping reliable. Earlier attempts to do this required a magnetic field but that made the method expensive and inefficient. The researchers have solved this problem by applying a special anti-ferromagnetic material on top of the bits. This enables the requisite magnetic field to be frozen, as it were, energy-efficient and low cost. "This could be the decisive nudge in the right direction for superfast MRAM in the near future," according to Van den Brink.

####

For more information, please click here

Contacts:
Henk Swagten

31-631-947-994

Copyright © Eindhoven University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Magnetism/Magnons

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project