Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Chemical cages: New technique advances synthetic biology

Abstract:
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules--the enzymes.

Chemical cages: New technique advances synthetic biology

Tempe, AZ | Posted on February 10th, 2016

In a new study, Hao Yan, director of the Center for Molecular Design and Biomimetics at Arizona State University's Biodesign Institute presents a clever means of localizing and confining enzymes and the substrate molecules they bind with, speeding up reactions essential for life processes.

The research, which appears in the current issue of the journal Nature Communications, could have far-reaching applications in fields ranging from improving industrial efficiencies to pioneering new medical diagnostics, guiding targeted drug delivery and producing smart materials. The work also promises to shed new light on particulars of cellular organization and metabolism.

The technique involves the design of specialized, nanometer-scale cages, which self-assemble from lengths of DNA. The cages hold enzyme and substrate in close proximity, considerably accelerating the rate of reactions and shielding them from degradation.

"We have been designing programmable DNA nanostructures with increasing complexity for many years, and it is now time to ask what can we do with these structures," Yan says. "There are numerous other applications from this emerging technology. Through our interdisciplinary collaborative effort, we here describe the use of designer DNA nanocages to compartmentalize enzymatic reactions in a confined environment. Drawing inspiration from Nature, we have uncovered interesting properties, some unexpected."

Zhao Zhao, a researcher in the Center for Molecular Design and Biomimetics was the lead author of the paper, which was co-authored with researchers from ASU as well as the Department of Chemistry, Rutgers and the Department of Chemistry, Single Molecule Analysis Group, University of Michigan.

Enzyme world

As chemical activators for virtually every reaction in the body, enzymes are key participants in the normal activity of cells, tissues, fluids, and organs. Hundreds of thousands of metabolic enzymes are present in the human body, involved in diverse activities including DNA copying and repair and the transformation of glucose into useable energy. Elsewhere, some 22 digestive enzymes break down carbohydrates (amylases), fats (lipases ) and sugars (disaccharides), while so-called protease enzymes digest proteins.

Enzymes tend to be highly specific, not only in the useful functions they perform, but the precise substrates with which they will work. Substrate molecules of exactly the right size and shape bind with their appropriate enzymes as the correct key fits into the ridges and grooves of a lock.

Substrates latch onto enzyme molecules at a particular region known as the active site. Once enzyme and substrate have combined, a chemical product is formed and then released, returning the enzyme to its original configuration where it is ready to operate on a new molecule of substrate.

In order for such reactions to take place in an efficient manner, Nature has devised methods of compartmentalization, forming natural reactor sites where enzyme-substrate reactions unfold. The cell itself is such a compartment, as are various membrane-bound organelles found in eukaryotes, (cells containing a nucleus), including mitochondria, lysosomes and peroxisomes.

Compartmentalization of reactants helps to overcome a variety of challenges, bringing binding chemicals into cozy proximity, isolating enzyme-substrate complexes from competing reaction chemicals, improving the yield of product molecules produced and reducing the toxicity various intermediary chemicals can sometimes cause.

In order to induce or catalyze chemical reactions for a variety of purposes, synthetic biologists have copied a page from Nature's recipe book, designing artificial compartments fabricated from proteins, lipids or the nucleic acids found in DNA, (as in the current study).

Close encounters

Yan and his colleagues designed their synthetic reactors to house enzymes and their substrates, allowing chemical conversions to take place in a controlled environment. Each minute structure, measuring just 54 nanometers across, is something like a Faberge egg whose separate halves fit together to encapsulate their chemical contents. (A nanometer is one billionth of a meter or roughly 80,000 times smaller than the width of a human hair.)

Using the base pairing properties of DNA's four nucleotides, labeled A, T, C and G allows nanoscale architects like Yan to construct myriad forms in two- and three-dimensions. In the new study, DNA nanocages were used to encapsulate metabolic enzymes with high assembly yield and fine-tuned control over reactants and products.

The construction of the nanocages takes place in two steps. First, individual enzymes are attached into open half-cage structures. Then, the half-cages are fitted together into a full, closed nanocage. To create the half-cages, a technique known as DNA origami is used. Lengths of viral DNA are prepared to self-assemble into a honeycomb lattice, with A nucleotides pairing with C and T with G.

The open-sided half cages of the DNA nanocages allow the access of large protein molecules into the nanocage's internal cavity. The two half-cages are fitted together with the aid of short bridge DNA strands that bind with complementary DNA sequences extending from the edges of either half-cage, (see accompanying animation). The small gaps on each of the top and bottom surfaces of the DNA nanocage allow the diffusion of small molecules across the DNA walls.

Probing the nanoscale

To examine the resulting structures, Transmission Electron Microscopy was used, along with gel electrophoresis and single molecule fluorescence experiments which demonstrated that close to 100 percent of the DNA segments properly formed half-cage structures and more than 90 percent formed full cages.

The study examined six different enzymes, ranging in size from the smallest, which measured ~44kD (kilodaltons) to the largest, ~ 450 kD. All six enzymes were successfully encapsulated in nanocages, though the yields varied according to enzyme size. The largest enzyme examined, known as β-galactosidase, showed the lowest yield of 64 percent.

Next, the activity of enzyme-substrate pairs was evaluated. In addition to bringing the enzyme-substrate pair into closer binding proximity, encapsulation in the nanocage is also believed to facilitate activity through the unique electrical charge density conditions within the nanocage.

Subsequent experiments demonstrated that most of the effect on enzyme-substrate activity in nanocages is due to the unique charge environment within nanocages, rather than enzyme-substrate proximity. The authors suggest that encapsulated enzymes exhibit higher activity within densely packed DNA cages as a result of the highly ordered, hydrogen-bonded water environment surrounding them.

An evaluation of enzyme activity showed a 4- to 10-fold increase for enzymes encapsulated in nanocages, compared with the activity of free enzymes. Enzyme turnover rate--defined as the maximum number of chemical conversions of substrate molecules per second--was inversely correlated with the size of encapsulated enzymes, with the smallest enzyme yielding the highest turnover.

Future cages

The DNA cages demonstrated their resiliency during the experiments, retaining their structural form throughout the enzymatic reactions. They also protected encapsulated enzymes from deactivation due to digestive chemicals, while permitting the uninterrupted diffusion of small-molecule substrates and reaction products through the nanopores of the DNA cage.

Encapsulation in nanocages was shown to increase the fraction of active enzyme molecules and their individual turnover numbers. The method thus provides a new molecular tool to modify the local environment surrounding enzymes and their substrates, opening the door to new applications in smart materials and biomedical applications. Among the latter are futuristic, programmable cages that could be used as nanoscale delivery mechanisms for a wide range of therapeutic agents.

###

Nano-caged Enzymes with Enhanced Catalytic Activity and Increased Stability against Protease Digestion

Zhao Zhao1,3, Jinglin Fu4, Soma Dhakal5, Alexander Johnson-Buck5, Minghui Liu1, Ting Zhang4, Neal W. Woodbury2,3, Yan Liu1,3, Nils G. Walter5 and Hao Yan1,3

1Center for Molecular Design and Biomimetics, 2Center for Innovations in Medicine, the Biodesign Institute, 3School of Molecular Sciences, Arizona State University, Tempe, AZ 85287. 4Department of Chemistry, Rutgers University-Camden, Camden, NJ, 08102. 5Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI, 48109, USA.

####

For more information, please click here

Contacts:
Richard Harth

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Synthetic Biology

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Seattle Hub for Synthetic Biology launched by Allen Institute, Chan Zuckerberg Initiative, and the University of Washington will turn cells into recording devices to unlock secrets of disease: First-of-its-kind research initiative will develop technologies to reveal how changes i December 8th, 2023

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project