Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Metal oxide sandwiches: New option to manipulate properties of interfaces

This is a sketch of the structure of both metal oxide layers. Interesting new properties can arise at the interface.

Credit: M. Bibes
This is a sketch of the structure of both metal oxide layers. Interesting new properties can arise at the interface.

Credit: M. Bibes

Abstract:
Sandwich systems of thin film transition metal oxides display surprising properties at their interfaces. In case of the paradigmatic example of Lanthan-Aluminate ( LaAlO3) and Strontium-Titanate (SrTiO3) both materials are insulators and non-magnetic, while their interface has been observed to display ferromagnetism, high electrical conductivity and even superconductivity.

Metal oxide sandwiches: New option to manipulate properties of interfaces

Berlin, Germany | Posted on February 8th, 2016

Now the team of Manuel Bibes, CNRS Thales at Palaiseau, France, in collaboration with scientists at HZB around Sergio Valencia and several European groups, devised a new approach to tailor interface properties. Together they designed a series of experiments at the synchrotron source BESSY II to shed more light on the emergence of such property changes, identifying a new "knob" for their control.

Rare-Earth Elements influence charge transfer

The samples, which the team of Manuel Bibes did produce, consisted of a sandwich of 2 nm Gadolinium-Titanate (GdTiO3) and "R"-Nickelate (RNiO3) films, where R is a rare-earth element. "We have been able to combine two very different transition metal oxides: whereas in the titanate electrons in the chemical bonds are strongly localized around the ions, in the nickelate side these electrons are shared between Nickel- and Oxygen-ions, and thus highly covalent", Manuel Bibes explains. When putting both materials together some charge is transferred from the titanate layer to the nickelate one. They investigated this charge transfer process for samples containing different rare-earth elements in the nickelate layer such as Lanthanum, Neodymium and Samarium at BESSY II.

Their results show that the charge transfer at the interface between the materials strongly depends on the rare earth element in the nickelate layer. Different rare-earth elements have different atomic radii (size).This modifies the interaction between the Ni and O atoms and the degree of "covalency" between Ni and O changes. This was already known, but now the scientists have observed that this also affects the charge transferred from the GdTiO3 to the Nickelate film. "This is the key result", Sergio Valencia from HZB explains. "We have found a new "knob". Covalency (which is controlled by changing R) controls the charge transfer between the titanate and the nickelate."

Ferromagnetism observed, superconductivity still searched

Tuning the charge transfer in this way might allow to control the formation of new interfacial phases too. For example, the scientists observed a new ferromagnetic phase at the interface. "Our work may help in the ongoing quest for cuprate-like superconductivity in nickelate heterostructures", Valencia says. "We hope that this study will help to design better interfaces for exploring new exciting new phases of matter at interfaces between covalent materials", Bibes adds.

####

For more information, please click here

Contacts:
Dr. Sergio Valencia Molina

49-308-062-15619

Copyright © Helmholtz-Zentrum Berlin für Materialien und Energie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Published in Nature Physics: doi:10.1038/nphys3627

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

UC Irvine scientists create material that can take the temperature of nanoscale objects: The technology can track small temp changes in electronic devices, biological cells August 16th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Superconductivity

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project