Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Novel nanoparticle made of common mineral may help keep tumor growth at bay

A common over-the-counter drug, chopped down into nanoparticle size, stopped growth in a cancer tumor.
A common over-the-counter drug, chopped down into nanoparticle size, stopped growth in a cancer tumor.

Abstract:
Engineers at Washington University in St. Louis found a way to keep a cancerous tumor from growing by using nanoparticles of the main ingredient in common antacid tablets.

Novel nanoparticle made of common mineral may help keep tumor growth at bay

St. Louis, MO | Posted on February 4th, 2016

The research team, led by Avik Som, an MD/PhD student, and Samuel Achilefu, PhD, professor of radiology and of biochemistry & molecular biophysics in the School of Medicine and of biomedical engineering in the School of Engineering & Applied Science, in collaboration with two labs in the School of Engineering & Applied Science, used two novel methods to create nanoparticles from calcium carbonate that were injected intravenously into a mouse model to treat solid tumors. The compound changed the pH of the tumor environment, from acidic to more alkaline, and kept the cancer from growing.

With this work, researchers showed for the first time that they can modulate pH in solid tumors using intentionally designed nanoparticles. Results of the research were recently published online in Nanoscale.

"Cancer kills because of metastasis," said Som, who is working on a doctorate in biomedical engineering in addition to a medical degree. "The pH of a tumor has been heavily correlated with metastasis. For a cancer cell to get out of the extracellular matrix, or the cells around it, one of the methods it uses is a decreased pH." The researchers set out to find new approaches to raise the pH of the tumor and do so only in the tumor environment. In water, the pH in calcium carbonate increases as high as 9. But when injected into the body, the team discovered that calcium carbonate only raises the pH to 7.4, the normal pH in the human body. However, working with calcium carbonate presented some challenges.

"Calcium carbonate doesn't like to be small," Som said. "Calcium carbonate crystals are normally 10 to 1,000 times bigger than an ideal nanoparticle for cancer therapy. On top of that, calcium carbonate in water will constantly try to grow, like stalactites and stalagmites in a cave."

To solve this issue, Som worked with other researchers in the School of Engineering & Applied Science to create two unique solutions. Teaming up with researchers in the lab of Pratim Biswas, PhD, the Lucy & Stanley Lopata Professor and chair of the Department of Energy, Environmental & Chemical Engineering, they developed a method using polyethyleneglycol-based diffusion to synthesize 20- and 300-nanometer-sized calcium carbonate.

Working with Srikanth Singamaneni, PhD, assistant professor of materials science, they developed another method to create 100-nanometer-sized calcium carbonate by building on a method known as ethanol-assisted diffusion. By harnessing the complementary expertise of the different labs, the researchers developed a solvent made of albumin to keep the calcium carbonate nanoparticles from growing, allowing them to be injected into the body intravenously.

Commonly, nanoparticles have been made with gold and silver. However, neither are present in the human body, and there are concerns about them accumulating in the body.

"Calcium and carbonate are both found heavily in the body, and they are generally non-toxic," Som said. "When calcium carbonate dissolves, the carbonate becomes carbon dioxide and is released through the lungs, and calcium is often incorporated into the bones."

Som and the team injected the calcium carbonate nanoparticles into the mouse fibrosarcoma model daily, which kept the tumor from growing. However, when they stopped injecting the nanoparticles, it started growing again.

Going forward, the researchers plan to determine the optimal dose to prevent metastasis, improve targeting to tumors and determine if it could be used with chemotherapy drugs.

####

For more information, please click here

Contacts:
Erika Ebsworth-Goold

314-935-2914

Copyright © Washington University in St. Louis

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Videos/Movies

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Cancer

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project