Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Novel nanoparticle made of common mineral may help keep tumor growth at bay

A common over-the-counter drug, chopped down into nanoparticle size, stopped growth in a cancer tumor.
A common over-the-counter drug, chopped down into nanoparticle size, stopped growth in a cancer tumor.

Abstract:
Engineers at Washington University in St. Louis found a way to keep a cancerous tumor from growing by using nanoparticles of the main ingredient in common antacid tablets.

Novel nanoparticle made of common mineral may help keep tumor growth at bay

St. Louis, MO | Posted on February 4th, 2016

The research team, led by Avik Som, an MD/PhD student, and Samuel Achilefu, PhD, professor of radiology and of biochemistry & molecular biophysics in the School of Medicine and of biomedical engineering in the School of Engineering & Applied Science, in collaboration with two labs in the School of Engineering & Applied Science, used two novel methods to create nanoparticles from calcium carbonate that were injected intravenously into a mouse model to treat solid tumors. The compound changed the pH of the tumor environment, from acidic to more alkaline, and kept the cancer from growing.

With this work, researchers showed for the first time that they can modulate pH in solid tumors using intentionally designed nanoparticles. Results of the research were recently published online in Nanoscale.

"Cancer kills because of metastasis," said Som, who is working on a doctorate in biomedical engineering in addition to a medical degree. "The pH of a tumor has been heavily correlated with metastasis. For a cancer cell to get out of the extracellular matrix, or the cells around it, one of the methods it uses is a decreased pH." The researchers set out to find new approaches to raise the pH of the tumor and do so only in the tumor environment. In water, the pH in calcium carbonate increases as high as 9. But when injected into the body, the team discovered that calcium carbonate only raises the pH to 7.4, the normal pH in the human body. However, working with calcium carbonate presented some challenges.

"Calcium carbonate doesn't like to be small," Som said. "Calcium carbonate crystals are normally 10 to 1,000 times bigger than an ideal nanoparticle for cancer therapy. On top of that, calcium carbonate in water will constantly try to grow, like stalactites and stalagmites in a cave."

To solve this issue, Som worked with other researchers in the School of Engineering & Applied Science to create two unique solutions. Teaming up with researchers in the lab of Pratim Biswas, PhD, the Lucy & Stanley Lopata Professor and chair of the Department of Energy, Environmental & Chemical Engineering, they developed a method using polyethyleneglycol-based diffusion to synthesize 20- and 300-nanometer-sized calcium carbonate.

Working with Srikanth Singamaneni, PhD, assistant professor of materials science, they developed another method to create 100-nanometer-sized calcium carbonate by building on a method known as ethanol-assisted diffusion. By harnessing the complementary expertise of the different labs, the researchers developed a solvent made of albumin to keep the calcium carbonate nanoparticles from growing, allowing them to be injected into the body intravenously.

Commonly, nanoparticles have been made with gold and silver. However, neither are present in the human body, and there are concerns about them accumulating in the body.

"Calcium and carbonate are both found heavily in the body, and they are generally non-toxic," Som said. "When calcium carbonate dissolves, the carbonate becomes carbon dioxide and is released through the lungs, and calcium is often incorporated into the bones."

Som and the team injected the calcium carbonate nanoparticles into the mouse fibrosarcoma model daily, which kept the tumor from growing. However, when they stopped injecting the nanoparticles, it started growing again.

Going forward, the researchers plan to determine the optimal dose to prevent metastasis, improve targeting to tumors and determine if it could be used with chemotherapy drugs.

####

For more information, please click here

Contacts:
Erika Ebsworth-Goold

314-935-2914

Copyright © Washington University in St. Louis

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Cancer

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project