Home > Press > Using mathematics to improve human health
The picture shows a model of one of the SAPN particles that has been constructed by Newton Wahome based on a tiling by Giuliana Indelicato, illustrating how tiling theory predicts the surface architecture of the nanoparticle. Wahome and Indelicato are the joint first authors of this paper. |
Abstract:
Scientists at the Universities of York and Torino have used mathematics as a tool to provide precise details of the structure of protein nanoparticles, potentially making them more useful in vaccine design.
Working with a world-leading group at the University of Connecticut in the USA, who pioneered the development of self-assembling protein nanoparticles (SAPNs) for vaccine design, they have used advanced mathematical calculations to create a complete picture of the surface morphology of these particles. The research is published in the Biophysical Journal.
The nanoparticles self-assemble symmetrically using protein building blocks to create cage or shell-like architectures, which serve a range of functions such as storage, catalysis and structural scaffolding, or as enclosures for viral genomes. But electron microscopy and neutron scattering data has limited effectiveness for researchers attempting to classify the morphology of the nanoparticles.
Using mathematics to predict the geometries of nanoparticles can help scientists to select those whose structures are the most advantageous for the design of new vaccines. The constant need for vaccine development as new strains of disease evolve has generated a world market worth $56 billion a year.
The new study focused on a class of artificial SAPNs designed by Professor Peter Burkhard, a structural biophysicist at the University of Connecticut. When chemically attached to antigens from pathogens, nanoparticles can create simple, potent and cost-effective vaccines. Clinical tests on a malaria vaccine designed in this way are due to start soon.
Researchers at York and Torino, led by biophysicist Professor Reidun Twarock, of the University of York's York Centre for Complex Systems Analysis and the Departments of Mathematics and Biology, used a mathematical tool called tiling theory to predict the symmetric classification of different particle morphologies of SAPNs. They adapted the tiling approach Professor Twarock previously pioneered in the context of virology to model protein nanoparticles with a mixture of local five- and three-fold symmetry axes.
Professor Twarock said: "We have developed a mathematical approach that allows you to identify the surface structures of these nanoparticles that you cannot get from experimentation alone. Mathematics plays an important role here because it acts like a microscope and helps to give researchers insights they couldn't get experimentally."
Professor Burkhard added: "The protein nanoparticles show great promise as future vaccine carriers and our malaria vaccine will be tested in a clinical setting within the next year. Understanding the geometric principles of the self-assembly to nanoparticles is essential for the successful design and development as vaccines."
####
For more information, please click here
Contacts:
David Garner
44-019-043-22153
Copyright © University of York
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||