Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Unconventional superconductivity near absolute zero temperature: Quantum critical point could be the reason for high temperature superconductivity

Abstract:
Researchers at the Goethe University have discovered an important mechanism for superconductivity in a metallic compound containing ytterbium, rhodium and silicon. As reported by Cornelius Krellner and his colleagues in the current edition of the Science journal, the underlying concept of the quantum-critical point has long been discussed as a possible mechanism for high-temperature superconductivity. Confirming this in YbRh2Si2 after 10 years of extensive research is thus a milestone in basic research. Due to its extremely low transition temperature of two-thousandths of a degree above absolute zero, the material will have no practical relevance.

Unconventional superconductivity near absolute zero temperature: Quantum critical point could be the reason for high temperature superconductivity

Frankfurt, Germany | Posted on February 2nd, 2016

"The ytterbium atoms are essential to the material properties because they are magnetic - and for a particularly fascinating reason", Prof. Krellner from the Institute for Physics at Goethe University explains. This is because the transition to the magnetized state (phase transition) takes place at such low temperatures that temperature-related movements of the tiny atomic magnets no longer play a role. This is what distinguishes this phase transition from all other known transitions, such as the freezing of water into ice. Quantum fluctuations dominate at temperatures near absolute zero (minus 273 degrees). These are so strong that nature attempts to take on alternative ordered fundamental states.

Superconductivity is a potential collective state which can arise at a quantum-critical point. "After we discovered it in YbRh2Si2, we were able to show that unconventional superconductivity is a general mechanism at a quantum-critical point", Krellner explains. The elaborate low-temperature measurements were taken in collaboration with the Walther-Meißner Institute for Low Temperature Research in Garching.

Cornelius Krellner studied YbRh2Si2 10 years ago while working towards his doctorate at the Max-Planck Institute for Chemical Physics of Solids. At the time, he was growing single crystals of the compound. The quality and size of these was essential to measuring the material properties in the first place. "We were all very enthusiastic when we saw the first indications of superconductivity, and I put all my efforts into growing even better and larger single crystals", remembers Krellner, who has headed the Crystal and Materials Laboratory at Goethe University since 2012. That it took so long after that to produce the final proof of unconventional superconductivity was due to the fact that the measurements are extremely time-consuming. Furthermore, it was necessary to study the superconductivity with different techniques in order to show that it really was a case of unconventional superconductivity.

Krellner and his team use a special method to grow the crystals. It prevents ytterbium from vaporizing at the required high temperatures of 1500 degrees Celsius. "We are currently the only ones in Europe with the capability of producing single crystals of YbRh2Si2" Krellner is proud to tell us. Over the next few years, he and his colleagues want to study the magnetic order above the superconducting range. Physicists will also study the superconductivity itself in greater detail over the next few years - a task which will be enabled by the pure and large single crystals from AG Krellner.

####

For more information, please click here

Contacts:
Cornelius Krellner

Copyright © Goethe University Frankfurt

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Quantum Physics

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Superconductivity

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project