Home > Press > New invention revolutionizes heat transport
Artistic impression of quantum-limited heat conduction of photons over macroscopic distances.
CREDIT: Heikka Valja |
Abstract:
Scientists at Aalto University, Finland, have made a breakthrough in physics. They succeeded in transporting heat maximally effectively ten thousand times further than ever before. The discovery may lead to a giant leap in the development of quantum computers.
Heat conduction is a fundamental physical phenomenon utilized, for example, in clothing, housing, car industry, and electronics. Thus our day-to-day life is inevitably affected by major shocks in this field. The research group, led by quantum physicist Mikko Möttönen has now made one of these groundbreaking discoveries. This new invention revolutionizes quantum-limited heat conduction which means as efficient heat transport as possible from point A to point B. This is great news especially for the developers of quantum computers.
Quantum technology is still a developing research field, but its most promising application is the super-efficient quantum computer. In the future, it can solve problems that a normal computer can never crack. The efficient operation of a quantum computer requires that it can be cooled down efficiently. At the same time, a quantum computer is prone to errors due to external noise.
Möttönen's innovation may be utilized in cooling quantum processors very efficiently and so cleverly that the operation of the computer is not disturbed.
"Our research started already in 2011 and advanced little by little. It feels really great to achieve a fundamental scientific discovery that has real practical applications", Professor Mikko Möttönen rejoices.
In the QCD Labs in Finland, Möttönen's research group succeeded in measuring quantum-limited heat transport over distances up to a meter. A meter doesn't sound very long at first, but previously scientists have been able to measure such heat transport only up to distances comparable to the thickness of a human hair.
"For computer processors, a meter is an extremely long distance. Nobody wants to build a larger processor than that", stresses Möttönen.
The discovery is so important, that it will be published on February 1st, 2016 in Nature Physics which is the most prestigious scientific journal in physics.
The key idea in their research was to use photons to transfer the heat. Photons are particles that, for example, form the visible light. Previously scientists have used, for example, electrons as the heat carriers.
"We know that photons can transport heat over long distances. In fact, they bring the heat of the Sun to the Earth", Möttönen says.
The team came up with the idea to use a transmission line with no electrical resistance to transport the photons. This superconducting line was built on a silicon chip with the size of a square centimeter. Tiny resistors were placed at the ends of the transmission line. The research results were obtained by measuring induced changes in the temperatures of these resistors.
New physics
The Quantum Computing and Devices (QCD) group led by Prof. Möttönen was able to show that quantum-limited heat conduction is possible over long distances. The result enables the application of this phenomenon outside laboratories. Thus the device built by the team fundamentally changes how heat conduction can be utilized in practice.
Möttönen's previous research results have also been praised in the scientific community as well as the media. He has published articles in top journals, such as Nature and Science. However, there is a reason why this new discovery feels even better than previous breakthroughs:
"The research has been fully carried out in my lab by my staff. This really makes me feel like I hit the jackpot", Möttönen rejoices.
####
For more information, please click here
Contacts:
Mikko Möttönen, Docent, D.Sc.
Aalto University
Department of Applied Physics
QCD Labs
http://physics.aalto.fi/qcd/
mobile: +358 50 594 0950
Twitter: @mpmotton
Blog: https://blogs.aalto.fi/quantum/
Copyright © Aalto University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Free link to the submitted version of the article:
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Quantum Physics
Energy transmission in quantum field theory requires information September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Quantum Computing
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||