Home > Press > Scientists synthesize nanoparticles that can deliver tumor suppressors to damaged livers
This is Dr. Daniel Siegwart. CREDIT: UT Southwestern Medical Center |
Abstract:
UT Southwestern Medical Center chemists have successfully used synthetic nanoparticles to deliver tumor-suppressing therapies to diseased livers with cancer, an important hurdle scientists have been struggling to conquer.
Late-stage liver cancer is a major challenge for therapeutic intervention. Drugs that show promise in healthy functioning livers can cause devastating toxicity in cirrhotic livers with cancer, the researchers explained.
UT Southwestern scientists crafted synthetic "dendrimer" nanoparticles that are able to provide the tumor-suppressing effect without further damaging the liver or neighboring tissue. The findings appear in the journal, Proceedings of the National Academy of Sciences.
"We have synthesized highly effective dendrimer carriers that can deliver drugs to tumor cells without adverse side effects, even when the cancerous liver is consumed by the disease," said Dr. Daniel Siegwart, Assistant Professor of Biochemistry and with the Harold C. Simmons Comprehensive Cancer Center. "We found that efficacy required a combination of a small RNA drug that can suppress cancer growth and the carrier, thereby solving a critical issue in treating aggressive liver cancer and providing a guide for future drug development."
Primary liver cancer, a chronic consequence of liver disease, is a leading cause of cancer death and a major global health problem. Each year in the United States, about 20,000 men and 8,000 women get liver cancer, and the 5-year survival rate is only 17 percent, according to the Centers for Disease Control and Prevention. The percentage of Americans who get liver cancer has been rising slowly for several decades, with higher rates in Asians and in Hispanic and African-American men.
Critical to understanding this problem, and developing the new therapy, was a close collaboration between Dr. Siegwart and Dr. Hao Zhu, Assistant Professor at the Children's Medical Center Research Institute at UT Southwestern, and a practicing oncologist.
"Early-stage disease can be cured with surgery, but there are few options for cirrhotic patients with advanced liver cancers," said Dr. Zhu, also Assistant Professor of Internal Medicine and Pediatrics at UT Southwestern.
The recent failure of five phase III human clinical trials of small-molecule drugs to treat hepatocellular carcinoma - the most common form of liver cancer - prompted the authors to develop non-toxic carriers and explore "miRNA" therapies as a promising alternative. MicroRNAs (miRNAs) are short nucleic acids that can function as natural tumor suppressors, but require delivery strategies to transport these large, anionic drugs into cells. To date, no existing carrier has been able to provide effective delivery to late-stage liver cancer without amplified toxicity, which negates the desired effect.
To address this problem, UTSW scientists chemically synthesized more than 1,500 different types of nanoparticles, which allowed discovery of lead compounds that could function in the heavily compromised cancerous liver. Synthetic, man-made nanoscale compounds called dendrimers provided an opportunity to screen different combinations of chemical groups, physical properties, and molecular size, Dr. Siegwart said. This approach led to the identification of dendrimers to deliver miRNA to late-stage liver tumors with low liver toxicity.
The study, conducted in genetic mouse models with a highly aggressive form of liver cancer, demonstrated that the miRNA nanoparticles inhibited tumor growth and dramatically extended survival.
The multidisciplinary UTSW research team included Dr. Kejin Zhou, Liem Nguyen, Jason Miller, Dr. Yunfeng Yan, Dr. Petra Kos, Dr. Hu Xiong, Lin Li, Dr. Jing Hao, and Jonathan Minnig. The Siegwart Research Group uses a materials chemistry approach to tackle challenges in cancer therapy and diagnosis. The lab is currently focused on the development of improved materials for effective delivery of siRNA, miRNA, mRNA, and CRISPR strategies to manipulate gene expression in tumors and develop the next generation of cancer therapies.
###
The research was supported by the Cancer Prevention and Research Institute of Texas (CPRIT), the Welch Foundation, the American Cancer Society, and the Mary Kay Foundation. Additional support for individual researchers included the Howard Hughes Medical Institute (HHMI), the Pollack Foundation, the National Institutes of Health, and the Burroughs Wellcome Fund.
The Harold C. Simmons Comprehensive Cancer Center is the only NCI-designated Comprehensive Cancer Center in North Texas and one of just 45 NCI-designated Comprehensive Cancer Centers in the nation. The Simmons Cancer Center includes 13 major cancer care programs with a focus on treating the whole patient with innovative treatments, while fostering groundbreaking basic research that has the potential to improve patient care and prevention of cancer worldwide. The Simmons Cancer Center is among only 30 U.S. cancer research centers to be named a National Clinical Trials Network Lead Academic Participating Site by the NCI, and the only cancer center in North Texas to be so designated.
####
For more information, please click here
Contacts:
Russell Rian
214-648-3404
Copyright © UT Southwestern Medical Center
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Cancer
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||