Home > Press > Flexible film may lead to phone-sized cancer detector
Abstract:
A thin, stretchable film that coils light waves like a Slinky could one day lead to more precise, less expensive monitoring for cancer survivors.
The University of Michigan chemical engineers who developed the film say it could help patients get better follow-up treatment with less disruption to their everyday lives.
The film provides a simpler, more cost-effective way to produce circularly polarized light, an essential ingredient in the process that could eventually provide an early warning of cancer recurrence. The film is detailed in a paper published online in Nature Materials.
"More frequent monitoring could enable doctors to catch cancer recurrence earlier, to more effectively monitor the effectiveness of medications and to give patients better peace of mind. This new film may help make that happen," said Nicholas Kotov, the Joseph B. and Florence V. Cejka Professor of Engineering.
Circular polarization is similar to the linear version that's common in things like polarized sunglasses. But instead of polarizing light in a two-dimensional wave, circular polarization coils it into a three-dimensional helix shape that can spin in either a clockwise or counterclockwise direction.
Circular polarization is invisible to the naked eye, and it's rare in nature. That makes it useful in an up-and-coming cancer detection process that looks to be able to spot telltale signs of the disease in blood. Currently in the research stage, the process requires large, expensive machines to generate the circularly polarized light. Kotov believes the new film could provide a simpler, less expensive way to induce polarization.
The detection process identifies biomarkers--bits of protein and snippets of DNA--that are present in the blood from the earliest stages of cancer recurrence. It starts with synthetic biological particles that are made to be attractive to these biomarkers. The particles are first coated with a reflective layer that responds to circularly polarized light, then added to a small blood sample from the patient. The reflective particles bind to the natural biomarkers, and clinicians can see this when they examine the sample under circularly polarized light.
Kotov envisions that the film could be used to make a portable smartphone-sized device that could quickly analyze blood samples. The devices could be used by doctors, or potentially even at home.
"This film is light, flexible and easy to manufacture," he said. "It creates many new possible applications for circularly polarized light, of which cancer detection is just one."
Another key advantage is the film's stretchability. Light stretching causes precise, instantaneous oscillations in the polarization of the light that's passed through it. This can change the intensity of the polarization, alter its angle or reverse the direction of its spin. It's a feature that could enable doctors to change the properties of light, like focusing a telescope, to zero in on a wider variety of particles.
To make the film, the research team started with a rectangle of PDMS, the flexible plastic used for soft contact lenses. They twisted one end of the plastic 360 degrees and clamped both ends down. They then applied five layers of reflective gold nanoparticles--enough particles to induce reflectivity, but not enough to block light from passing through. They used alternating layers of clear polyurethane to stick the particles to the plastic.
"We used gold nanoparticles for two reasons," said Yoonseob Kim, a graduate student research assistant in chemical engineering. "First, they're very good at polarizing the kind of visible light that we were working with in this experiment. In addition, they're very good at self-organizing into the S-shaped chains that we needed to induce circular polarization."
Finally, they untwisted the plastic. The untwisting motion caused the nanoparticle coating to buckle, forming S-shaped particle chains that cause circular polarization in light that's passed through the plastic. The plastic can be stretched and released tens of thousands of times, altering the degree of polarization when it's stretched and returning to normal when it's released over and over again.
A commercially available device is likely several years away. Kotov also envisions the use of circularly polarized light for data transmission and even devices that can bend light around objects, making them partially invisible. U-M is pursuing patent protection for the technology.
###
The study, "Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale," was funded by the National Science Foundation (grant number ECS-0601345) and the U.S. Department of Defense.
####
For more information, please click here
Contacts:
Gabe Cherry
737-763-2937
Copyright © University of Michigan
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Cancer
Thin films
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||