Home > Press > Treatment of Damaged Heart Tissues by Nanochains Containing Protein
Abstract:
Iranian researchers from Tehran University of Medical Sciences in association with American researchers succeeded in the production of nanostructures whose main application is in the treatment of damaged heart tissues after a heart attack.
The samples have been produced and studied at laboratorial scale, and they have shown appropriate performance on animal samples. This research tries to produce nanostructures that cure damaged heart tissues after a heart attack.
Results of the research showed that a protein called FSTL1 plays an important role in the growth and recovery of myocardial tissue. Myocardial tissue is the most important damaged tissue after a heart attack. Therefore, there should be FSTL1 protein in the heart to cure the tissue. However, the level of the protein intensively decreases after the attack. In addition, the protein is not able to grow or cure the damaged myocardial tissue in case it is produced in the myocardial tissue in a natural manner or through genetic manipulation.
In order to overcome this problem, nanochain-structured collagen scaffolds were produced in this research containing FSTL1 protein, which has physical and mechanical properties (elasticity and stiffness) similar to those of fetal myocardium. In other words, the scaffolds are able to cure the damaged myocardium by triggering cell migration or angiogenic methods.
The laboratorial samples were synthesized through plastic compression method, and they were tested on animal samples (rats and pigs). Results confirmed the appropriate recovery of heart after the damage.
Results of the research have been published in NATURE, vol. 525, 2015, pp. 479-485.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||