Home > Press > Some like it hot: Simulating single particle excitations: Berkeley Lab researchers model hot carrier movement in real-time
The energy stored in the plasmon and the single particle (hot carrier), when the single particle excitation energy is not in tune with the plasmon excitation energy. The oscillation between these two modes of excitation is called Rabi oscillation. CREDIT: Berkeley Lab |
Abstract:
Plasmons, which may be thought of as clouds of electrons that oscillate within a metal nanocluster, could serve as antennae to absorb sunlight more efficiently than semiconductors. Understanding and manipulating them is important for their potential use in photovoltaics, solar cell water splitting, and sunlight-induced fuel production from CO2.
But in these applications, single particle excitation rather than the collective plasmon excitation is needed to transfer electrons one at a time to an electrode and induce desired chemical reactions. After the plasmon is excited by sunlight, it induces the single particle excitation 'hot carriers.' Now, for the first time, the interplay between the plasmon mode and the single particle excitation within a small metal cluster has been simulated directly.
Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) used a real-time numerical algorithm, developed at Berkeley Lab in February, to study both the plasmon and hot carrier within the same framework. That is critical for understanding how long a particle stays excited, and whether there is energy backflow from hot carrier to plasmon. The new study shows the electron move-ment when it is perturbed by light.
"You need to consider how the plasmon can give its energy to single particle excitations. People have done this analytically, but they looked at the bulk-like material and treated the plasmon mode using classical de-scription," says Lin-Wang Wang, senior staff scientist at Berkeley Lab, who led this work. "We have described both the plasmon and the single particle excitation quantum mechanically, and studied nanoparticles because they are often used in actual applications. If you generate a hot carrier in such a nanosystem, it's easier to transfer to the connected electrode due to their small sizes." His calculations used light to excite Ag55, a me-tallic nanocluster with known geometry, and showed the behavior of the plasmon and the single particle exci-tation.
The study was published in a Nature Communications paper titled 'Interplay Between Plasmon and Single-particle Excitations in a Metal Nanocluster.' Jie Ma and Zhi Wang, also from Berkeley Lab, and Lin-Wang Wang are the authors.
In the simulations, metallic nanoparticle clusters clearly responded to external light, with charge 'sloshing' back and forth within the clusters. However, that movement can be caused both by a plasmon and by single particle excitations. The trick is showing which is which.
"We found a way to distinguish them by their different oscillating behaviors. Using this method, we found that if a hot carrier excitation is in tune with the plasmon oscillation, then 90% of the plasmon energy can be con-verted to the single particle energy. But if they are out of tune, the total energy will go back and forth be-tween the plasmon and the single particle exication," explains Wang.
Jie Ma, a postdoc who is the lead author of the paper, adds that "the single particle excitation is the continu-ous change of the electron occupation, but the plasmon is the oscillation of the electron occupations around the Fermi energy ['ground' level of the electron reservoir]." When resonance builds up between the two, most of the energy transfers to the hot carrier.
Conventional ground state computational methods cannot be used to study systems in which electrons have been excited. But using real-time simulations, an excited system can be modeled with time-dependent equa-tions that describe the movement of electrons in the femtosecond (quadrillionth of a second) timescale.
An excited single particle can drop rapidly to a lower energy state by emitting a phonon, which is the vibration of the atoms. This means that it is no longer a hot carrier. Eventually, all hot carriers will lose their energy, as electrons and holes recombine in a metallic system. But the question is how long the hot carrier will remain hot and able to transport to another electrode or molecule before it is cooled. Previous studies, which do not include the nuclei movement, cannot describe the cooling process. But Wang's simulation suggests that in a small nanostructure the carrier cools more slowly than in a bulk system.
"Here, we simulated isolated nanoparticles. But if you put the nanoparticles on some substrate, that could be really interesting," says Ma. It will be important to understand how long a hot carrier can stay hot.
With powerful computational tools, these questions can now be answered and used in the development of future plasmon-driven applications.
###
The work was funded by the Department of Energy's Office of Science and supported by the Joint Center for Artificial Synthesis (JCAP), a DOE Energy Innovation Hub, and used the resources of the National Energy Re-search Scientific Computing Center (NERSC), a DOE Office of Science User Facility at Berkeley Lab.
####
About Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.
DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.
For more information, please click here
Contacts:
Jon Weiner
510-486-4014
Copyright © Lawrence Berkeley National Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
For more about the research of Lin-Wang Wang go here:
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||