Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Heat radiates 10,000 times faster at the nanoscale

The view inside the Ultra High Vacuum Scanning Thermal Microscope, which was used to measure temperature fluxes at the nanoscale. Image credit: Joseph Xu
The view inside the Ultra High Vacuum Scanning Thermal Microscope, which was used to measure temperature fluxes at the nanoscale.

Image credit: Joseph Xu

Abstract:
-When heat travels between two objects that aren't touching, it flows differently at the smallest scales--distances on the order of the diameter of DNA, or 1/50,000 of a human hair.

Heat radiates 10,000 times faster at the nanoscale

Ann Arbor, MI | Posted on December 11th, 2015

While researchers have been aware of this for decades, they haven't understood the process. Heat flow often needs to be prevented or harnessed and the lack of an accurate way to predict it represents a bottleneck in nanotechnology development.

Now, in a unique ultra-low vibration lab at the University of Michigan, engineers have measured how heat radiates from one surface to another in a vacuum at distances down to 2 nanometers.

While the thermal energy still flows from the warmer place to the colder one, the researchers found it does so 10,000 times faster than it would at the scale of, say, a bonfire and a pair of chilly hands. "Faster" here refers to the speed at which the temperature of one sample changes the temperature of the other--and not the speed at which the heat itself travels. Heat is a form of electromagnetic radiation, so it moves at the speed of light. What's different at the nanoscale is the efficiency of the process.

"We've shown, for the first time, the dramatic enhancements of radiative heat fluxes in the extreme near-field," said Pramod Reddy, associate professor of mechanical engineering and materials science and engineering. "Our experiments and calculations imply that heat flows several orders of magnitude faster in these ultra small gaps."

Reddy and Edgar Meyhofer, a professor of mechanical engineering and biomedical engineering, led the work. A paper on the findings is newly published online in Nature.

The findings have applications across nanotechnology. They could advance next-generation information storage such as heat-assisted magnetic recording. They could push forward devices that more directly convert heat into electricity, including heat generated in cars and spacecrafts that is now being wasted. Those are just a few potential uses.

The phenomenon the researchers studied is "radiative heat"--the electromagnetic radiation, or light, that all matter above absolute zero emits. It is the emission of the internal energy of matter from movement of particles in matter--movement that only happens above absolute zero.

Scientists can explain how this happens at macroscopic distances, dimensions we can readily perceive in the world around us, down to some we can't see. More than 100 years ago, the German physicist Max Planck wrote the equations that make this possible. His model accurately describes heat transfer across large to relatively small voids, reaching to 10 micrometers at room temperature. But when the gap gets so tight it's almost not there, the equations break down.

In the middle of the last century, the Russian radio physicist Sergei Rytov proposed a new theory called "fluctuational electrodynamics" to describe heat transfer at smaller-than-10-micrometer distances. Since then, research hasn't always resulted in supporting evidence.

"There were experiments in the 1990s or early 2000s that tried to test these ideas further and they found large discrepancies between what theory would predict and what experiments revealed," Meyhofer said.

Because of the sophistication of the U-M lab, the researchers say their findings close the case, and Rytov was right.

"Our work, performed in collaboration with colleagues Professor Juan Carlos Cuevas and Professor Francisco García-Vidal at the Universidad Autónoma de Madrid, resolves an important controversy and represents a key contribution to the field of heat transfer," Reddy said. "These results disprove current dogma in nanoscale heat transfer, which holds that radiative heat transfer in single digit nanometer-sized gaps cannot be explained by existing theory."

The facility the researchers used is an ultra-low vibration chamber in the G. G. Brown Laboratories, the university's newly renovated mechanical engineering complex. The chamber--one of several--was custom designed for performing nanoscale experiments so precise that mere footsteps could disturb them if they were done somewhere else. The rooms can withstand vibration from outside, such as traffic, and inside, such as heating and cooling systems. They also limit acoustic noise, temperature and humidity variations, as well as radio frequency and magnetic interference.

"Our facility represents the true state of the art," Meyhofer said. "When creating nanoscale gaps such as those required for our nanoscale heat radiation experiments, the slightest perturbation can ruin an experiment."

In the chamber, the researchers used custom-built "scanning thermal microscopy probes" that allowed them to directly study how fast heat flows between two surfaces of silica, silicon nitride and gold. The researchers chose these materials because they're commonly used in nanotechnology.

For each material, they designated one sample that would be heated to 305 Fahrenheit, and they coated the tip of the probe with the same material, but kept it at a cooler 98 degrees. They slowly moved the sample and the probe together, beginning at 50 nanometers until they were touching, and they measured the temperature of the tip at regular intervals.

The cause of the rapid heat transfer, the researchers discovered, is that in nanoscale gaps there can be an overlap of the two sides' surface and evanescent waves, both of which carry heat.

"These waves reach only a small distance into the gap between materials," said Bai Song, a graduate student in mechanical engineering and one of the lead authors. "And their intensity at the extreme near-field is enormous compared to the electromagnetic waves at larger distances. When these waves from two different devices overlap, that's when they allow tremendous heat flux."

###

The paper is titled "Radiative heat transfer in the extreme near field." It also involved collaborators from Universidad Autónoma de Madrid, Massachusetts Institute of Technology and Donostia International Physics Center. The work was funded by the U.S. Department of Energy Basic Energy Sciences, Army Research Office, National Science Foundation, Spanish Ministry of Economy and Competitiveness, and other organizations.

####

For more information, please click here

Contacts:
Nicole Casal Moore

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Study: Radiative heat transfer in the extreme near field

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project