Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The subtle dance of atoms influences enzyme activity: Certain infinitesimal fluctuations of distant atoms can control enzyme function even though they are not directly involved in enzyme catalysis

Abstract:
Infinitesimal fluctuations occurring on the milli- and even nano-second time scales within the three-dimensional structure of enzymes may be one of the keys to explaining protein function. Professor Nicolas Doucet's team at INRS has demonstrated that even when certain amino acids are far from the active site of an enzyme, a change in their flexibility and atomic fluctuations can significantly impact enzyme activity. This phenomenon, which has been underestimated up to now, could explain certain protein engineering failures and help improve the way synthetic functional enzymes are designed.

The subtle dance of atoms influences enzyme activity: Certain infinitesimal fluctuations of distant atoms can control enzyme function even though they are not directly involved in enzyme catalysis

Québec, Canada | Posted on December 10th, 2015

Enzymes are nanomachines that are exceptionally efficient at catalyzing a chemical reaction. They play a role in all cellular mechanisms. Like all proteins, they are made up of amino acid chains that are folded and assembled in a very precise 3D structure. Some enzymes, like ribonuclease A, are so efficient that they catalyze the transformation of chemical molecules thousands of times per second.

In this study, Donald Gagné, a researcher in Professor Doucet's lab holding a PhD in biology from INRS, analyzed the impact of removing a methyl group located near a loop distant from the reaction site of ribonuclease A--a very slight change that presumably would have no effect. The mutation does not perturb the 3D structure of the enzyme. However, it did result in a four-fold reduction in the affinity of ribonuclease A for nucleotides (molecules to which it must bind to carry out its function). How is this possible?

Using crystallography techniques and nuclear magnetic resonance to examine the enzyme at atomic resolution, Donald Gagné compared normal ribonuclease A with the mutated enzyme. He observed that when ribonuclease A is modified, the nucleotides do not position themselves correctly and have a harder time binding to the active site. It appears that this repositioning is due to an increase in enzyme fluctuations caused by the elimination of this distant methyl group, which we can picture as creating vibrations that spread through the enzyme structure all the way to the site of catalysis.

This demonstration of the importance of enzyme dynamics could change our understanding of protein and enzyme mechanisms. While it remains a challenge to measure fluctuations at this atomic scale, researchers have studied the three-dimensional structure of proteins to understand how they function. Despite the staggering complexity of this phenomenon, we now know that proteins are increasingly regulated by the subtle dance of their atoms.

####

About INRS
INRS is a graduate-level research and training university and ranks first in Canada for research intensity (average grant funding per faculty member). INRS brings together some 150 professors and close to 700 students and postdoctoral fellows in its four centres located in Montreal, Quebec City, Laval, and Varennes. Its applied and fundamental research is essential to the advancement of science in Quebec and internationally, playing a key role in the development of tangible solutions to the problems faced by our society.

For more information, please click here

Contacts:
Stéphanie Thibault

514-499-6612

Copyright © INRS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

About the publication

Related News Press

Chemistry

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project