Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quantum physics problem proved unsolvable: Gödel and Turing enter quantum physics

Abstract:
A mathematical problem underlying fundamental questions in particle and quantum physics is provably unsolvable, according to scientists at UCL, Universidad Complutense de Madrid - ICMAT and Technical University of Munich.

Quantum physics problem proved unsolvable: Gödel and Turing enter quantum physics

London, UK | Posted on December 10th, 2015

It is the first major problem in physics for which such a fundamental limitation could be proven. The findings are important because they show that even a perfect and complete description of the microscopic properties of a material is not enough to predict its macroscopic behaviour.

A small spectral gap - the energy needed to transfer an electron from a low-energy state to an excited state - is the central property of semiconductors. In a similar way, the spectral gap plays an important role for many other materials. When this energy becomes very small, i.e. the spectral gap closes, it becomes possible for the material to transition to a completely different state. An example of this is when a material becomes superconducting.

Mathematically extrapolating from a microscopic description of a material to the bulk solid is considered one of the key tools in the search for materials exhibiting superconductivity at ambient temperatures or other desirable properties. A study, published today in Nature, however, shows crucial limits to this approach. Using sophisticated mathematics, the authors proved that, even with a complete microscopic description of a quantum material, determining whether it has a spectral gap is, in fact, an undecidable question.

"Alan Turing is famous for his role in cracking the Enigma code," said Co-author, Dr Toby Cubitt from UCL Computer Science. "But amongst mathematicians and computer scientists, he is even more famous for proving that certain mathematical questions are `undecidable' - they are neither true nor false, but are beyond the reach of mathematics. What we've shown is that the spectral gap is one of these undecidable problems. This means a general method to determine whether matter described by quantum mechanics has a spectral gap, or not, cannot exist. Which limits the extent to which we can predict the behaviour of quantum materials, and potentially even fundamental particle physics."

One million dollars to win!

The most famous problem concerning spectral gaps is whether the theory governing the fundamental particles of matter itself - the standard model of particle physics - has a spectral gap (the `Yang-Mills mass gap' conjecture). Particle physics experiments such as CERN and numerical calculations on supercomputers suggest that there is a spectral gap. Although there is a $1m prize at stake from the Clay Mathematics Institute for whoever can, no one has yet succeeded in proving this mathematically from the equations of the standard model.

Dr Cubitt added, "It's possible for particular cases of a problem to be solvable even when the general problem is undecidable, so someone may yet win the coveted $1m prize. But our results do raise the prospect that some of these big open problems in theoretical physics could be provably unsolvable."

"We knew about the possibility of problems that are undecidable in principle since the works of Turing and Gödel in the 1930s," added Co-author Professor Michael Wolf from Technical University of Munich. "So far, however, this only concerned the very abstract corners of theoretical computer science and mathematical logic. No one had seriously contemplated this as a possibility right in the heart of theoretical physics before. But our results change this picture. From a more philosophical perspective, they also challenge the reductionists' point of view, as the insurmountable difficulty lies precisely in the derivation of macroscopic properties from a microscopic description."

Not all bad news

Co-author, Professor David Pérez-García from Universidad Complutense de Madrid and ICMAT, said: "It's not all bad news, though. The reason this problem is impossible to solve in general is because models at this level exhibit extremely bizarre behaviour that essentially defeats any attempt to analyse them. But this bizarre behaviour also predicts some new and very weird physics that hasn't been seen before. For example, our results show that adding even a single particle to a lump of matter, however large, could in principle dramatically change its properties. New physics like this is often later exploited in technology."

The researchers are now seeing whether their findings extend beyond the artificial mathematical models produced by their calculations to more realistic quantum materials that could be realised in the laboratory.

###

The research has been funded by the John Templeton Foundation, the Royal Society (UK), the Spanish Ministry of Economics and Competitiveness (MINECO), the Madrid Regional Government and the European Research Council (ERC).

####

For more information, please click here

Contacts:
Rebecca Caygill

44-203-108-3846

Copyright © University College London

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Quantum nanoscience

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project