Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Seeing viruses in a new light: New method for observing viruses may shed light on how to stop them

Optical fiber with a nano-scale channel
Optical fiber with a nano-scale channel

Abstract:
Want to make a virus? It's easy: combine one molecule of genomic nucleic acid, either DNA or RNA, and a handful of proteins, shake, and in a fraction of a second you'll have a fully-formed virus.



How can you fight something you can't see? Viruses like influenza spread so effectively, and as a result can be so deadly, because of their ability to spontaneously self-assemble in large numbers. If researchers can understand how viruses assemble, they may be able to design drugs that prevent them from forming in the first place.

Now, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences have engineered a new way to observe and track viruses as they assemble using fiberoptic cables. This new method may spot weaknesses in viruses that drug makers can exploit.

Harvard SEAS

Seeing viruses in a new light: New method for observing viruses may shed light on how to stop them

Cambridge, MA | Posted on December 7th, 2015

While that may sound like the worst infomercial ever, in many cases making a virus really is that simple. Viruses such as influenza spread so effectively, and as a result can be so deadly to their hosts, because of their ability to spontaneously self-assemble in large numbers.

If researchers can understand how viruses assemble, they may be able to design drugs that prevent viruses from forming in the first place. Unfortunately, how exactly viruses self-assemble has long remained a mystery because it happens very quickly and at such small length-scales.

Now, there is a system to track nanometer-sized viruses at sub-millisecond time scales. The method, developed by researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), is the first step towards tracking individual proteins and genomic molecules at high speeds as they assemble to create a virus.

The research was led by Vinothan Manoharan, the Wagner Family Professor of Chemical Engineering and Professor of Physics, and was published recently in ACS Nano. Manoharan's group worked in collaboration with researchers at Leiden University, MIT, the Leibniz Institute of Photonic Technology, the University of Jena, and Heraeus Quarzglas, a manufacturer of fiber optics.

"Our goal is to understand how viruses manage to assemble spontaneously, so quickly and so robustly," said Yoav Lahini, research associate, former Pappalardo Fellow at MIT, and co-first author of the study.

Identifying critical intermediate stages in the assembly process could help researchers understand how to interfere with this process, Lahini said. Shedding light on the physics of self-assembly could also help engineers design better synthetic nanomaterials that can spontaneously piece themselves together.

There are two main challenges to tracking virus assembly: speed and size. While fluorescent microscopy can detect single proteins, the fluorescent chemical compound that emits photons does so at a rate too slow to capture the assembly process. It's like trying to observe the mechanics of a hummingbird's flapping wing with stop-motion camera; it captures pieces of the process but the crucial frames are missing.

Very small particles, like capsid proteins, can be observed by how they scatter light. This technique, known as elastic scattering, emits an unlimited number of photons at a time, solving the problem of speed. However, the photons also interact with dust particles, reflected light, and imperfections in the optical path, all of which obscure the small particles being tracked.

To solve these problems, the team decided to leverage the outstanding quality of optical fibers, perfected over years of research in the telecommunication industry. They designed a new optical fiber with a nano-scale channel, smaller than the wavelength of light, running along the inside of its silica core. This channel is filled with liquid containing nanoparticles, so that when light is guided through the fiber's core, it scatters off the nanoparticles in the channel and is collected by a microscope above the fiber.

The researchers observed the motion of viruses measuring 26 nanometers in diameter at a rate of thousands of measurements per second.

"These are the smallest viruses to be tracked on sub-millisecond time scales, which are comparable to the time scales for self-assembly." said Rees Garmann, post-doctoral fellow in the Manoharan lab and co-author of the research.

The next step is to track not just single viruses but single viral proteins, which scatter 100 to 1,000 times less light than a single virus.

"This research is a step forward in observing and measuring the self-assembly of viruses," said Manoharan. "Viral infection involves many complex molecular and cellular pathways, but self-assembly is a process that is found in many different viruses. This simple technology, which is cheap, easy and scalable, could provide a new, cost effective way to study and diagnose viruses. From the point of view of fundamental physics, understanding the self-assembly of a naturally evolved system would be a major milestone in the study of complex systems."

####

For more information, please click here

Contacts:
Leah Burrows

617-496-1351

Copyright © Harvard John A. Paulson School of Engineering and Applied Sc

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project