Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 'Nanobombs' might deliver agents that alter gene activity in cancer stem cells

Xiaoming (Shawn) He
Xiaoming (Shawn) He

Abstract:
Researchers at The Ohio State University Comprehensive Cancer Center -- Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC -- James) have developed nanoparticles that swell and burst when exposed to near-infrared laser light.

'Nanobombs' might deliver agents that alter gene activity in cancer stem cells

Columbus, OH | Posted on December 4th, 2015

Such 'nanobombs' might overcome a biological barrier that has blocked development of agents that work by altering the activity -- the expression -- of genes in cancer cells. The agents might kill cancer cells outright or stall their growth.

The kinds of agents that change gene expression are generally forms of RNA (ribonucleic acid), and they are notoriously difficult to use as drugs. First, they are readily degraded when free in the bloodstream. In this study, packaging them in nanoparticles that target tumor cells solved that problem.

This study, published in the journal Advanced Materials, suggests that the nanobombs might also solve the second problem. When cancer cells take up ordinary nanoparticles, they often enclose them in small compartments called endosomes. This prevents the drug molecules from reaching their target, and they are soon degraded.

Along with the therapeutic agent, these nanoparticles contain a chemical that vaporizes, causing them to swell three times or more in size when exposed to near-infrared laser light. The endosomes burst, dispersing the RNA agent into the cell.

"A major challenge to using nanoparticles to deliver gene-regulating agents such as microRNAs is the inability of the nanoparticles to escape the compartments, the endosomes, that they are encased in when cells take up the particles," says principal investigator Xiaoming (Shawn) He, PhD, associate professor of Biomedical Engineering and member of the OSUCCC -- James Translational Therapeutics Program.

"We believe we've overcome this challenge by developing nanoparticles that include ammonium bicarbonate, a small molecule that vaporizes when exposing the nanoparticles to near-infrared laser light, causing the nanoparticle and endosome to burst, releasing the therapeutic RNA," He explains. For their study, He and colleagues used human prostate-cancer cells and human prostate tumors in an animal model. The nanoparticles were equipped to target cancer stem-like cells (CSCs), which are cancer cells that have properties of stem cells. CSCs often resist therapy and are thought to play an important role in cancer development and recurrence.

The therapeutic agent in the nanoparticles was a form of microRNA called miR-34a. The researchers chose this molecule because it can lower the levels of a protein that is crucial for CSC survival and may be involved in chemotherapy and radiation therapy resistance.

The nanoparticles also encapsulate ammonium bicarbonate, which is a leavening agent sometimes used in baking. Near-infrared laser light, which induces vaporization of the ammonium bicarbonate, can penetrate tissue to a depth of one centimeter (nearly half an inch). For deeper tumors, the light would be delivered using minimally invasive surgery.

###

The study's key technical findings include:

Nanoparticles with ammonium bicarbonate enlarged more than three times when activated with near-infrared laser (from about 100 nm in diameter at body temperature to more than 300 nm at 43 degrees C. (110 degrees F). Endosomes measure 150-200 nm in diameter;
The nanoparticles had great affinity for CSCs and very little for normal human adipose-derived stem cells;
The miR-34a nanobombs significantly reduced tumor volume in an animal model that bore human prostate tumors.
Funding from an American Cancer Society Research Scholar Grant and a Pelotonia Postdoctoral Fellowship supported this research.

Other researchers involved in this study were Hai Wang, Pranay Agarwal, Shuting Zhao and Jianhua Yu, all of The Ohio State University; and Xiongbin Lu of the University of Texas MD Anderson Cancer Center.

####

About Ohio State University Comprehensive Cancer Center
The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute strives to create a cancer-free world by integrating scientific research with excellence in education and patient-centered care, a strategy that leads to better methods of prevention, detection and treatment. Ohio State is one of only 45 National Cancer Institute-designated Comprehensive Cancer Centers and one of only four centers funded by the NCI to conduct both phase I and phase II clinical trials on novel anticancer drugs. As the cancer program’s 306-bed adult patient-care component, The James is one of the top cancer hospitals in the nation as ranked by U.S. News & World Report and has achieved Magnet designation, the highest honor an organization can receive for quality patient care and professional nursing practice. At 21 floors with more than 1.1 million square feet, The James is a transformational facility that fosters collaboration and integration of cancer research and clinical cancer care.

For more information, please click here

Contacts:
Darrell E. Ward

614-293-3737

Amanda Harper
Director of Media Relations
614-685-5420 (direct)
614-293-3737 (main)

Copyright © Ohio State University Comprehensive Cancer Center

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Cancer

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project