Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Viscous nanopores collapse according to universal law

Abstract:
Universal scaling law for the collapse of viscous nanopores

Jiakai Lu; Jiayun Yu; Carlos M. Corvalan

Transport Phenomena Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, United States

E-mail:

Below a threshold size, a small pore nucleated in a fluid sheet will contract to minimize the surface energy. Such behavior plays a key role in nature and technology, from nanopores in biological membranes to nanopores in sensors for rapid DNA and RNA sequencing. Here we show that nanopores nucleated in viscous fluid sheets collapse following a universal scaling law for the pore radius. High-fidelity numerical simulations reveal that the scaling is largely independent of the initial conditions, including the size, shape, and thickness of the original nanopore. Results further show that the scaling law yields a constant speed of collapse as observed in recent experiments. Nanopores in fluid sheets of moderate viscosity also attain this constant terminal speed provided that they are sufficiently close to the singularity.

Viscous nanopores collapse according to universal law

West Lafayette, IN | Posted on December 2nd, 2015

Viscous nanopores, tiny holes punctured in fluid membranes, collapse according to a universal law, a Purdue University study shows. The finding could improve the design of nanopores for fast, inexpensive DNA analysis and sheds light on the biology of pores in cell membranes.

Typically just big enough to allow a single strand of DNA to pass through, viscous nanopores are powerful sensors of molecules and have applications in many areas of technology. Small pores often contract to minimize surface energy, a behavior that plays a key role in nature and technology. But visualizing how nanopores shrink and collapse is difficult after their radius contracts smaller than 10 nanometers, thousands of times smaller than a red blood cell.

Carlos Corvalan, associate professor of food science, and his team used high-fidelity computer simulations to get an inside look at the physics that govern the closing of nanopores. The simulations showed that nanopores collapse following a universal law that scales according to the pore radius.

"With this knowledge, we could design better and cheaper ways of making nanopores that will speed up DNA analysis," Corvalan said. "This could also open the door to understanding how pores in cell membranes behave."

Nanopores drilled through a sheet of silicon provide a quick, cost-effective way to analyze DNA, RNA and proteins, which are "read" as they pass through the pore.

One challenge of this technology, however, is that nanopores are too small to be made. Instead, researchers make a larger hole and gradually shrink it, stopping when it reaches the desired size. This process could be optimized if the physics that controls the collapse of nanopores was clearly understood.

Corvalan's team used a Purdue supercomputer to uncover the nanoscale details of what happens inside the pore as it closes. Using data such as initial pore radius, shape and the thickness of the membrane allowed the computer to simulate a pore's collapse and showed the team the physics underpinning the process.

"Computer simulations help complement what we can't measure," he said. "Some things that happen at the surface can be measured, and if we can reproduce those, we are more confident that the other things we see in the simulation will be correct."

To the team's surprise, collapse of a pore follows a universal law based on the pore's initial radius. This law describes the collapse of any viscous nanopore regardless of its shape - spherical, cylindrical, triangular - or the thickness of the fluid sheet encompassing it.

"The beauty of the universal law is that after a brief transition at the beginning, everything collapses according to a constant rate," said Corvalan, who is also a courtesy associate professor of agricultural and biological engineering.

The finding offers researchers the ability to fine-tune the process of creating pores as nanosensors and could also help biologists understand how nanopores in cell membranes function. Nanopores serve as cells' connection to the outside world, enabling the exchange of materials between a cell and its exterior.

One method of destroying harmful microorganisms such as food pathogens is to make holes in bacterial membranes, a process known as electroporation. If the hole is too small, however, it may collapse and heal rather than open wider, killing the pathogen.

What makes a nanopore collapse? The answer lies in a basic principle of physics: Unless outside forces are at work, everything tries to use as little energy as possible. If a pore is small enough, it will collapse due to surface tension. If it's too large, then opening wider requires less energy than closing.

"That's why when you puncture a bubble, it will break," Corvalan said. "And that's why if the pore in a bacterial cell membrane is large enough, the cell will die."

Jiakai Lu, a postdoctoral researcher in food science, and Jiayun Yu, a biological engineering undergraduate, also co-authored the study.

The U.S. Department of Defense's Multidisciplinary University Research Initiative and the Purdue Research Foundation provided partial funding for the research.

####

For more information, please click here

Contacts:
Writer: Natalie van Hoose
765-496-2050


Source: Carlos Corvalan
765-494-8262


Ag Communications:
(765) 494-2722;
Keith Robinson,
Agriculture News Page

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper was published in the Journal of the American Chemical Society and is available to journal subscribers and on-campus readers at:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project