Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Viscous nanopores collapse according to universal law

Abstract:
Universal scaling law for the collapse of viscous nanopores

Jiakai Lu; Jiayun Yu; Carlos M. Corvalan

Transport Phenomena Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, United States

E-mail:

Below a threshold size, a small pore nucleated in a fluid sheet will contract to minimize the surface energy. Such behavior plays a key role in nature and technology, from nanopores in biological membranes to nanopores in sensors for rapid DNA and RNA sequencing. Here we show that nanopores nucleated in viscous fluid sheets collapse following a universal scaling law for the pore radius. High-fidelity numerical simulations reveal that the scaling is largely independent of the initial conditions, including the size, shape, and thickness of the original nanopore. Results further show that the scaling law yields a constant speed of collapse as observed in recent experiments. Nanopores in fluid sheets of moderate viscosity also attain this constant terminal speed provided that they are sufficiently close to the singularity.

Viscous nanopores collapse according to universal law

West Lafayette, IN | Posted on December 2nd, 2015

Viscous nanopores, tiny holes punctured in fluid membranes, collapse according to a universal law, a Purdue University study shows. The finding could improve the design of nanopores for fast, inexpensive DNA analysis and sheds light on the biology of pores in cell membranes.

Typically just big enough to allow a single strand of DNA to pass through, viscous nanopores are powerful sensors of molecules and have applications in many areas of technology. Small pores often contract to minimize surface energy, a behavior that plays a key role in nature and technology. But visualizing how nanopores shrink and collapse is difficult after their radius contracts smaller than 10 nanometers, thousands of times smaller than a red blood cell.

Carlos Corvalan, associate professor of food science, and his team used high-fidelity computer simulations to get an inside look at the physics that govern the closing of nanopores. The simulations showed that nanopores collapse following a universal law that scales according to the pore radius.

"With this knowledge, we could design better and cheaper ways of making nanopores that will speed up DNA analysis," Corvalan said. "This could also open the door to understanding how pores in cell membranes behave."

Nanopores drilled through a sheet of silicon provide a quick, cost-effective way to analyze DNA, RNA and proteins, which are "read" as they pass through the pore.

One challenge of this technology, however, is that nanopores are too small to be made. Instead, researchers make a larger hole and gradually shrink it, stopping when it reaches the desired size. This process could be optimized if the physics that controls the collapse of nanopores was clearly understood.

Corvalan's team used a Purdue supercomputer to uncover the nanoscale details of what happens inside the pore as it closes. Using data such as initial pore radius, shape and the thickness of the membrane allowed the computer to simulate a pore's collapse and showed the team the physics underpinning the process.

"Computer simulations help complement what we can't measure," he said. "Some things that happen at the surface can be measured, and if we can reproduce those, we are more confident that the other things we see in the simulation will be correct."

To the team's surprise, collapse of a pore follows a universal law based on the pore's initial radius. This law describes the collapse of any viscous nanopore regardless of its shape - spherical, cylindrical, triangular - or the thickness of the fluid sheet encompassing it.

"The beauty of the universal law is that after a brief transition at the beginning, everything collapses according to a constant rate," said Corvalan, who is also a courtesy associate professor of agricultural and biological engineering.

The finding offers researchers the ability to fine-tune the process of creating pores as nanosensors and could also help biologists understand how nanopores in cell membranes function. Nanopores serve as cells' connection to the outside world, enabling the exchange of materials between a cell and its exterior.

One method of destroying harmful microorganisms such as food pathogens is to make holes in bacterial membranes, a process known as electroporation. If the hole is too small, however, it may collapse and heal rather than open wider, killing the pathogen.

What makes a nanopore collapse? The answer lies in a basic principle of physics: Unless outside forces are at work, everything tries to use as little energy as possible. If a pore is small enough, it will collapse due to surface tension. If it's too large, then opening wider requires less energy than closing.

"That's why when you puncture a bubble, it will break," Corvalan said. "And that's why if the pore in a bacterial cell membrane is large enough, the cell will die."

Jiakai Lu, a postdoctoral researcher in food science, and Jiayun Yu, a biological engineering undergraduate, also co-authored the study.

The U.S. Department of Defense's Multidisciplinary University Research Initiative and the Purdue Research Foundation provided partial funding for the research.

####

For more information, please click here

Contacts:
Writer: Natalie van Hoose
765-496-2050


Source: Carlos Corvalan
765-494-8262


Ag Communications:
(765) 494-2722;
Keith Robinson,
Agriculture News Page

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper was published in the Journal of the American Chemical Society and is available to journal subscribers and on-campus readers at:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Nanobiotechnology

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project