Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New study reveals what's behind a tarantula's blue hue: Researchers uncover nanostructures in exoskeleton of blue-haired tarantulas

This is a critically endangered gooty sapphire ornamental tarantula and its reflection.
CREDIT: Michael Kern/www.thegardensofeden.org
This is a critically endangered gooty sapphire ornamental tarantula and its reflection.

CREDIT: Michael Kern/www.thegardensofeden.org

Abstract:
Scientists recently discovered that tiny, multilayer nanostructures inside a tarantula's hair are responsible for its vibrant color. The science behind how these hair-raising spiders developed their blue hue may lead to new ways to improve computer or TV screens using biomimicry.

New study reveals what's behind a tarantula's blue hue: Researchers uncover nanostructures in exoskeleton of blue-haired tarantulas

San Diego, CA | Posted on November 30th, 2015

Researchers from Scripps Institution of Oceanography at UC San Diego and University of Akron found that many species of tarantulas have independently evolved the ability to grow blue hair using nanostructures in their exoskeletons, rather than pigments. The study, published in the Nov. 27 issue of Science Advances, is the first to show that individual species evolved separately to make the same shade of a non-iridescent color, one that doesn't change when viewed at different angles.

Since tarantulas' blue color is not iridescent, the researchers suggest that the same process can be applied to make pigment replacements that never fade and help reduce glare on wide-angle viewing systems in phones, televisions, and other devices.

"There is strikingly little variety in the shade of blue produced by different species of tarantulas," said Dimitri Deheyn, a Scripps Oceanography researcher studying marine and terrestrial biomimicry and coauthor of the study. "We see that different types of nanostructures evolved to produce the same 'blue' across distant branches of the tarantula family tree in a way that uniquely illustrates natural selection through convergent evolution."

Unlike butterflies and birds that use nanostructures to produce vibrant colors to attract the attention of females during display courtship, tarantulas have poor vision and likely evolved this trait for a different reason. While the researchers still don't understand the benefits tarantulas receive from being blue, they are now investigating how to reproduce the tarantula nanostructures in the laboratory.

The tarantula study is just one example of the biomimicry research being conducted in the Deheyn lab at Scripps Oceanography. In a cover article in the Nov. 10 of Chemistry of Materials, Deheyn and colleagues published new findings on the nanostructure of ragweed pollen, which shows interesting optical properties and has possible biomimicry applications. By transforming the pollen into a magnetic material with a specialized coating to give it more or less reflectance, the particle could adhere in a similar way that pollen does in nature while being able to adjust its visibility. The researchers suggest this design could be applied to create a new type of tagging or tracking technology.

Using a high-powered microscope, known as a hyperspectral imaging system, Deheyn is able to map a species' color field pixel by pixel, which correlates to the shape and geometry of the nanostructures and gives them their unique color.

"This unique technology allows us to associate structure with optical property," said Deheyn. "Our inspiration is to learn about how nature evolves unique traits that we could mimic to benefit future technologies."

In addition to Deheyn, the Science Advances paper's coauthors include Bor-Kai Hsiung, Matthew Shawkey and Todd Blackledge of the University of Akron.

####

About University of California, San Diego
The University of California, San Diego is a student-centered, research-focused, service-oriented public institution that provides opportunity for all. Recognized as one of the top 15 research universities worldwide and born of a culture of collaboration, UC San Diego sparks discoveries that advance society, drive economic growth and positively impact the world. Our students, who learn from Nobel laureates, MacArthur Fellows and National Academy members, are committed to public service. For the sixth consecutive year, UC San Diego has been ranked first in the nation based on research, civic engagement and social mobility. We are one campus with multiple pillars of excellence, a top ten public university that is transforming lives, shaping new disciplines and advancing the frontiers of knowledge.

About Scripps Institution of Oceanography

Scripps Institution of Oceanography at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and education in the world. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical, and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today on every continent and in every ocean. The institution has a staff of more than 1,400 and annual expenditures of approximately $195 million from federal, state, and private sources. Scripps operates oceanographic research vessels recognized worldwide for their outstanding capabilities. Equipped with innovative instruments for ocean exploration, these ships constitute mobile laboratories and observatories that serve students and researchers from institutions throughout the world. Birch Aquarium at Scripps serves as the interpretive center of the institution and showcases Scripps research and a diverse array of marine life through exhibits and programming for more than 430,000 visitors each year. Learn more at scripps.ucsd.edu and follow us at: Facebook | Twitter | Instagram.

Scripps Institution of Oceanography: scripps.ucsd.edu

Scripps News: scrippsnews.ucsd.edu

For more information, please click here

Contacts:
Mario Aguilera

858-534-3624

Copyright © University of California, San Diego

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New chip ramps up AI computing efficiency August 19th, 2022

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project