Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Iranian Scientists Present Graphic Model for Interaction of Anti-HIV Drug, HIV Virus

Abstract:
Iranian researchers presented a graphic model to demonstrate the interaction between anti-HIV drug and HIV virus with high accuracy.

Iranian Scientists Present Graphic Model for Interaction of Anti-HIV Drug, HIV Virus

Tehran, Iran | Posted on November 20th, 2015

The graphic model can increased the effectiveness of the drug while its side effects will reduce by predicting the mechanism of the drug.

Specific characteristics of fullerene and its derivatives have enabled it to be widely used in medical applications. These materials are used in gene transference, magnetic resonance imaging and drug delivery purposes. However, applications of fullerene have been limited in biological environments due to its very low solubility in polar solvents.

One of the most important applications of fullerene derivatives is the elimination of HIV virus. A few nanostructures of fullerene derivatives have been introduced in this research as anti-HIV drugs and their tendency to attach to HIV enzyme has been theoretically investigated. A comparison was also made between the proposed drugs and other conventional drugs. These drugs have been introduced as effective medical potentials in a theoretical manner. However, the recent progresses in laboratorial and experimental synthesis of nanodrugs enable the proposed drugs to be produced in laboratory in the near future.

Results of the research showed that the proposed nanodrugs have better performance as HIV prevention medical potentials. The interesting point in this research is the presentation of a new graphic model to demonstrate the interaction of drugs and the target tissue or cell such as enzymes.

Taking into consideration the toxicity of non-functionalized fullerene molecule, the application of the presented theoretical method instead of practical experiments can prevent the harmful effects of the drug as well as increasing the effectiveness of the proposed nanostructure.

Results of the research have been published in Journal of Molecular Modeling, vol. 20, issue 11, 2014, pp. 2486-2495.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project