Home > Press > Laboratorial Production of Nanodrug in Iran to Treat Intestine Diseases
Abstract:
Iranian researchers succeeded in the production of nanodrugs with higher therapeutic effects but less side effects which can be delivered to the target tissue to cure intestine diseases.
According to the researchers, the main objective of the research was to produce target delivery nanodrug for the treatment of human intestine diseases which is sensitive both to the pH value of the digestive system and external magnetic field.
The time, place and rate of drug release can be controlled by using this nanodrug through the changes made in its therapeutic properties. In fact, a decrease occurs in the time of the presence of drug in blood stream while the half-life of the drug increases and its toxicity decreases. Therefore, the use of the new drug delivery system results in less side effects, more efficiency and the comfort and satisfaction of the patient.
The synthesized nanodrug has magnetic properties, which enables its transfer to the target tissue by using an external magnetic field. The drug delivery system is able to easily pass through cell membrane, and it cannot be detected by macrophage system due to its small dimensions.
Hydrophilic carboxymethyl chitosan and carrageenan polysaccharides were used to coat magnetic nanoparticles containing drugs. Desirable and stable biomedical properties can be created for the nanoparticles by using this surface coating.
Results of the research have been published in Carbohydrate Polymers, vol. 128, 2015, pp. 112-121.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||