Home > Press > Laboratorial Production of Nanodrug in Iran to Treat Intestine Diseases
Abstract:
Iranian researchers succeeded in the production of nanodrugs with higher therapeutic effects but less side effects which can be delivered to the target tissue to cure intestine diseases.
According to the researchers, the main objective of the research was to produce target delivery nanodrug for the treatment of human intestine diseases which is sensitive both to the pH value of the digestive system and external magnetic field.
The time, place and rate of drug release can be controlled by using this nanodrug through the changes made in its therapeutic properties. In fact, a decrease occurs in the time of the presence of drug in blood stream while the half-life of the drug increases and its toxicity decreases. Therefore, the use of the new drug delivery system results in less side effects, more efficiency and the comfort and satisfaction of the patient.
The synthesized nanodrug has magnetic properties, which enables its transfer to the target tissue by using an external magnetic field. The drug delivery system is able to easily pass through cell membrane, and it cannot be detected by macrophage system due to its small dimensions.
Hydrophilic carboxymethyl chitosan and carrageenan polysaccharides were used to coat magnetic nanoparticles containing drugs. Desirable and stable biomedical properties can be created for the nanoparticles by using this surface coating.
Results of the research have been published in Carbohydrate Polymers, vol. 128, 2015, pp. 112-121.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |