Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotweezer is new tool to create advanced plasmonic technologies

This rendering depicts a new type of "nanotweezer" that could aid efforts to create advanced technologies such as quantum computers and ultra-high-resolution displays.Purdue University image/Mikhail Shalaginov and Pamela Burroff-Murr
This rendering depicts a new type of "nanotweezer" that could aid efforts to create advanced technologies such as quantum computers and ultra-high-resolution displays.

Purdue University image/Mikhail Shalaginov and Pamela Burroff-Murr

Abstract:
Long-range and rapid transport of individual nanoobjects by a hybrid electrothermoplasmonic nanotweezer

Justus C. Ndukaife1,2, Alexander V. Kildishev1, Agbai George Agwu Nnanna2, Vladimir M. Shalaev1, Steven T. Wereley3 and Alexandra Boltasseva1,4*

1School of Electrical & Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA. 2Water Institute, Purdue University Calumet, Hammond, Indiana 46323, USA. 3School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA. 4DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark. *email:

Plasmon-enhanced optical trapping is being actively studied to provide efficient manipulation of nanometer-sized objects. However, a long-standing issue with previously proposed solutions is how to controllably load the trap on-demand without relying on Brownian diffusion. Here, we show that the photo-induced heating of a nanoantenna in conjunction with an applied a.c. electric field can initiate rapid microscale fluid motion and particle transport with a velocity exceeding 10 μms –1, which is over two orders of magnitude faster than previously predicted. Our electrothermoplasmonic device enables on-demand long-range and rapid delivery of single nanoobjects to specific plasmonic nanoantennas, where they can be trapped and even locked in place. We also present a physical model that elucidates the role of both heat-induced fluidic motion and plasmonic field enhancement in the plasmon-assisted optical trapping process. Finally, by applying a d.c. field or low-frequency a.c. field (below 10 Hz) while the particle is held in the trap by the gradient force, the trapped nanoobjects can be immobilized into plasmonic hotspots, thereby providing the potential for effective low-power nanomanufacturing on-chip.

Nanotweezer is new tool to create advanced plasmonic technologies

West Lafayette, IN | Posted on November 2nd, 2015

A new type of "nanotweezer" capable of positioning tiny objects quickly and accurately and freezing them in place could enable improved nanoscale sensing methods and aid research to manufacture advanced technologies such as quantum computers and ultra-high-resolution displays.

The device, fabricated at Purdue University's Birck Nanotechnology Center, uses a cylindrical gold "nanoantenna" with a diameter of 320 nanometers, or about 1/300th the width of a human hair. The structures concentrate and absorb light, resulting in "plasmonic hotspots" and making it possible to manipulate nanometer-scale objects suspended in a fluid.

"The proposed approach enables the immediate implementation of a myriad of exciting applications," said Alexandra Boltasseva, associate professor of electrical and computer engineering.

Findings are detailed in a paper appearing online in Nature Nanotechnology Monday (Nov. 2).

Plasmonic devices harness clouds of electrons called surface plasmons to manipulate and control light. Potential applications for the nanotweezer include improved-sensitivity nanoscale sensors and the study of synthetic and natural nanoobjects including viruses and proteins; creation of "nanoassemblies" for plasmonic materials that could enable a host of advanced technologies; ultra-resolution "optofluidic" displays; and plasmonic circuitry for quantum logic units.

The nanotweezer might be used to create devices containing nanodiamond particles or other nanoscale light-emitting structures that can be used to enhance the production of single photons, workhorses of quantum information processing, which could bring superior computers, cryptography and communications technologies.

Conventional computers use electrons to process information. However, the performance might be ramped up considerably by employing the unique quantum properties of electrons and photons, said Vladimir M. Shalaev, co-director of a new Purdue Quantum Center, scientific director of nanophotonics at the Birck Nanotechnology Center and a distinguished professor of electrical and computer engineering.

"The nanotweezer system has been shown to cause convection in fluid on-demand, resulting in micrometer-per-second nanoparticle transport by harnessing a single plasmonic nanoantenna, which until now has been thought to be impossible," said doctoral student Justus C. Ndukaife.

Previous research had shown that convection using a single plasmonic nanoantenna was too weak to induce such a strong convection, below 10 nanometers per second, which cannot result in a net transport of suspended particles.

However, the Purdue researchers have overcome this limitation, increasing the velocity of particle transport by 100 times by applying an alternating current electric field in conjunction with heating the plasmonic nanoantenna using a laser to induce a force far stronger than otherwise possible.

"The local electromagnetic field intensity is highly enhanced, over 200 times, at the plasmonic hotspot," Ndukaife said. "The interesting thing about this system is that not only can we trap particles but also do useful tasks because we have these hotspots. If I bring a particle to the hotspot then I can do measurements, and sensing is enhanced because it is in a hotspot."

The new hybrid nanotweezer combines a near-infrared laser light and an electric field, inducing an "electrothermoplasmonic flow."

"Then, once we turn off the electric field the laser holds the particles in place, so it can operate in two modes. First, the fast transport using alternating current, and then you turn off the electric field and it goes into the plasmonic tweezing mode," he said.

The Purdue researchers are the first to induce electrothermoplasmonic flow using plasmonic structures.

The system also makes it possible to create patterns to project images, potentially for displays with ultra-fine resolution.

The laser traps the particles, making it possible to precisely position them. The technique was demonstrated with polystyrene particles.

The paper was authored by Ndukaife; Alexander V. Kildishev, an associate professor of electrical and computer engineering; Agbai George Agwu Nnanna, a professor of mechanical engineering; Shalaev; Steven T. Wereley, a professor of mechanical engineering; and Boltasseva.

The ongoing research is based at the Birck Nanotechnology Center and is funded by the National Science Foundation.

####

For more information, please click here

Contacts:
Writer:
Emil Venere
765-494-4709


Sources:
Vladimir Shalaev
765-494-9855


Alexandra Boltasseva
765-494-0301

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Display technology/LEDs/SS Lighting/OLEDs

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Quantum Computing

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Optical computing/Photonic computing

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Tools

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project