Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Cells get noisy in crowded environments

Figure 1. In A, the droplets are situated in a non-viscous environement and in B they have a higher viscosity. Slow by viscosity
Figure 1. In A, the droplets are situated in a non-viscous environement and in B they have a higher viscosity. Slow by viscosity

Abstract:
Bacteria are incredibly small, yet pack an enormous diversity of different molecules such as DNA, mRNA and proteins. Chemists from Radboud University Nijmegen, Eindhoven and Paris now show for the first time that random variations or ‘noise’ in cellular processes come to exist because of an interplay between the rate of the reaction and its environment. Nature Nanotechnology publishes the results on October 26.

Cells get noisy in crowded environments

Netherlands, NL | Posted on October 27th, 2015

In a living cell, many processes are continuously going on at the same time. Because of that, many different components are present in minute quantities, which inevitably leads to random variations in cellular processes which are also called ‘noise’ by chemists. Until now, the exact origin of the noise had never been fully explained.

Hundreds of picolitre droplets
Maike Hansen, chemist at Radboud University and first author of the article, explains: ‘To investigate the noise phenomenon, we placed DNA molecules in hundreds of tiny picolitre fluid droplets.’ All the droplets had the exact same composition, allowing the researchers to investigate them at the same time and look at the noise that originated from the small variations between them.

‘We discovered that as the viscosity or the stickiness of the droplets increases, the noise in the cells also increases’, Hansen says. ‘More into detail, we found out that in viscous environments, of which living cells are an example, the mobility of produced macromolecules like proteins declines. Because of that, the macromolecules are produced faster than they can diffuse away, leading to local reaction hotspots. These hotspots lead to a significant increase in noise, something we confirmed using simulations.’

Resistant bacteria and synthetic cells
When asked about the importance of this finding, Hansen explains: ‘We want to understand why cells are different from each other. For instance, why can different bacteria with the same basic information in their DNA be resistant or non-resistant to antibiotics? Those differences can be explained by the small variations that we measured. Furthermore, it is our aim to build a synthetic cell in the lab one day. To achieve this, we have to know all the details about cells and their reactions. So finding out that viscosity is important, is very important to us.’

Full bibliographic information

Macromolecular crowding develops heterogeneous environments of gene expression in picoliter droplets, Maike M. K. Hansen, Lenny H. H. Meijer, Evan Spruijt, Roel J. M. Maas, Marta Ventosa Roquelles, Joost Groen, Hans A. Heus, Wilhelm T. S. Huck, Nature Nanotechnology

####

For more information, please click here

Contacts:
Maike Hansen

Media relations office
Radboud University

00-31-24-361 60 00

Iris Kruijen

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project