Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Iranian Scientists Use New Model to Reduce Errors in Prediction of Nanocomposites' Behavior

Abstract:
Iranian researchers from Amirkabir University of Technology presented a numerical model to predict the behavior of polymeric composites more precisely in the presence of nanoparticles.

Iranian Scientists Use New Model to Reduce Errors in Prediction of Nanocomposites' Behavior

Tehran, Iran | Posted on October 17th, 2015

The difference between the results obtained from the model and experimental data is less than that of the previous models. Results of the research have applications in materials engineering, mechanical engineering and aerospace to decrease laboratorial costs.

Polymers reinforced with nanoparticles have attracted the attention of many researchers in recent years; therefore, correct prediction of elasticity modules of the polymer reinforced with nanoparticles is very important because it decreases the number of required tests, and as a result, reduces the laboratorial costs.

According to the researchers, debonding between the reinforcing phase and the polymeric bed is not very important in composites without the presence of nanoparticles, and the assumption of ideal contact is mostly correct. It has always been assumed in the previous theoretical models presented in the past that there is an ideal contact between the reinforcing agent at nanometric scale and the bed matrix. However, this assumption is not necessarily correct in nanocomposites, to the extent that significant difference is usually observed between the numerical data and experimental data, specially in high weight percentages of nanoparticles.

The model presented in this research can determine numerical module of nanocomposites with low error percent compared with experimental data. Based on the results, the error in modules obtained from laboratorial results and the numerical determine module decreases from 27% to 7% due to the calculation of rebonding. Therefore, the need for laboratorial tests is minimized by using the new method.

Results of the research have been published in Composites Science and Technology, vol. 117, issue 1, 2015, pp. 379-385.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Materials/Metamaterials/Magnetoresistance

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project