Home > Press > Iranian Scientists Use New Model to Reduce Errors in Prediction of Nanocomposites' Behavior
Abstract:
Iranian researchers from Amirkabir University of Technology presented a numerical model to predict the behavior of polymeric composites more precisely in the presence of nanoparticles.
The difference between the results obtained from the model and experimental data is less than that of the previous models. Results of the research have applications in materials engineering, mechanical engineering and aerospace to decrease laboratorial costs.
Polymers reinforced with nanoparticles have attracted the attention of many researchers in recent years; therefore, correct prediction of elasticity modules of the polymer reinforced with nanoparticles is very important because it decreases the number of required tests, and as a result, reduces the laboratorial costs.
According to the researchers, debonding between the reinforcing phase and the polymeric bed is not very important in composites without the presence of nanoparticles, and the assumption of ideal contact is mostly correct. It has always been assumed in the previous theoretical models presented in the past that there is an ideal contact between the reinforcing agent at nanometric scale and the bed matrix. However, this assumption is not necessarily correct in nanocomposites, to the extent that significant difference is usually observed between the numerical data and experimental data, specially in high weight percentages of nanoparticles.
The model presented in this research can determine numerical module of nanocomposites with low error percent compared with experimental data. Based on the results, the error in modules obtained from laboratorial results and the numerical determine module decreases from 27% to 7% due to the calculation of rebonding. Therefore, the need for laboratorial tests is minimized by using the new method.
Results of the research have been published in Composites Science and Technology, vol. 117, issue 1, 2015, pp. 379-385.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |