Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Patterning oxide nanopillars at the atomic scale by phase transformation

Atomic zip in SrNbO3.4. (a) HAADF STEM image taken before irradiation. The irradiation area is marked by a red open rectangle. (b) HAADF STEM image taken after the electron irradiation for ~300 s showing changes in atomic structure in the irradiated region. The zigzag-like slab in the rectangle is transformed to a chain-like connected structure, resulting in atomic merging of the two neighboring chain-like slabs. The new phase has adopted the structure of SrNbO3. The phase transformation can be well controlled with atomic precision.
CREDIT: Nano Letters
Atomic zip in SrNbO3.4. (a) HAADF STEM image taken before irradiation. The irradiation area is marked by a red open rectangle. (b) HAADF STEM image taken after the electron irradiation for ~300 s showing changes in atomic structure in the irradiated region. The zigzag-like slab in the rectangle is transformed to a chain-like connected structure, resulting in atomic merging of the two neighboring chain-like slabs. The new phase has adopted the structure of SrNbO3. The phase transformation can be well controlled with atomic precision.

CREDIT: Nano Letters

Abstract:
Researchers at Tohoku University's Advanced Institute for Materials Research (AIMR) have carried out a collaborative study aimed at precisely controlling phase transformations with high spatial precision, which represents a significant step forward in realizing new functionalities in confined dimensions.

Patterning oxide nanopillars at the atomic scale by phase transformation

Sendai, Japan | Posted on October 15th, 2015

The team, led by Prof. Yuichi Ikuhara, applied the focused electron beam of a scanning transmission electron microscope (STEM) to irradiate SrNbO3.4 crystals, and demonstrated a precise control of a phase transformation from layered SrNbO3.4 to perovskite SrNbO3 at the atomic scale.

Such a precise control of phase transformations opens up new avenues for materials design and processing, as well as advanced nanodevice fabrication. Full results of the study have been published in Nano Letters.

Background

Phase transformations in crystalline materials are of primary fundamental interest and practical significance in a wide range of fields, including materials science, information storage and geological science. To date, it remains highly desirable to precisely tailor the phase transformations in a material due to their potential impact on macroscopic properties and thus many advanced applications.

Despite decades of efforts, precisely controlling phase transformations at the atomic scale still poses a significant challenge due to the intricacies of governing thermodynamic conditions with atomic precision. Recent technical advances in aberration-corrected STEM offer fertile new ground for probing samples by a focused sub-Angström electron beam, opening an avenue for precisely triggering phase transformations.

Breakthrough

This work has demonstrated a successful control of a phase transformation from the layered SrNbO3.4 to the perovskite SrNbO3 with atomic precision by manipulating a focused sub-Angström electron beam to any selectable region.

Such a concept - of a precise control of phase transformations with an atomic spatial precision - should be, in principle, applicable not only to SrNbO3.4/SrNbO3 but also to other materials, finding applications in material processing and nanodevice fabrication.

Key points :

Precisely controlling phase transformation with high spatial precision
Patterning oxide nanopillars at the atomic scale by phase transformation

####

For more information, please click here

Contacts:
For information about the research:

Prof. Yuichi Ikuhara
Advanced Institute for Materials Research, Tohoku University
Institute of Engineering Innovation, The University of Tokyo

Tel: +81 3 5841-7688

Assist. Prof. Chunlin Chen and Assoc. Prof. Zhongchang Wang
Advanced Institute for Materials Research, Tohoku University
Email: chen.chunlinwpi-aimr.tohoku.ac.jp

Tel: +81 22 217-5933

For general enquiries:
Advanced Institute for Materials Research (AIMR), PR & Outreach Office
Tohoku University

Tel: +81 22 217-6146

Copyright © Tohoku University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication information

Related News Press

Chemistry

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Molecular Nanotechnology

Quantum pumping in molecular junctions August 16th, 2024

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project