Home > Press > Controllable protein gates deliver on-demand permeability in artificial nanovesicles
This is a nanoversicle with closed protein gates (red). CREDIT: University of Basel |
Abstract:
Researchers at the University of Basel have succeeded in building protein gates for artificial nano-vesicles that become transparent only under specific conditions. The gate responds to certain pH values, triggering a reaction and releasing active agents at the desired location. This is demonstrated in a study published in the journal Nano Letters.
Tiny nanovesicles can protect active agents until they arrive in specific environments, such as at the target site in the body. In order to trigger a chemical reaction and release the contents at that loca-tion, the outer casing of the synthetically produced vesicles must become permeable at the correct point in time. Working under Prof. Cornelia Palivan, researchers from the Swiss Nanoscience Insti-tute have now developed a membrane gate that opens on demand. This means that the enzymes inside a nanocapsule become active under exactly the right conditions and act on the diseased tissue directly.
Reacting to changes in pH
The gate is made up of the chemically modified membrane protein OmpF, which responds to certain pH values. At neutral pH in the human body, the membrane is impermeable - but if it encounters a region with acidic pH, the protein gate opens and substances from the surrounding area can enter the nanocapsule. In the resulting enzymatic reaction, the capsule's contents act on the incoming substrate and the product of this reaction is released. This method could be applied, for example, to inflamed or cancerous tissue, which often exhibits a slightly acidic pH value.
Until now, permeability in nanovesicles has been achieved using natural proteins that operate as pores in the protective membrane, allowing both the substrate to enter and the product of the enzymatic reaction to escape. However, fields such as medicine or controlled catalysis call for more precise distribution in order to achieve the greatest possible efficiency of the active agent. In collaboration with Prof. Wolfgang Meier's team, the chemists working under Prof. Palivan were able for the first time to integrate a modified membrane protein into an artificially produced nanocapsule, which opened only if it encountered corresponding pH values.
The experiments performed at the university are part of the National Center of Competence in Research Molecular Systems Engineering (NCCR MSE), and the Swiss Nanoscience Institute (SNI).
####
For more information, please click here
Contacts:
Yannik Sprecher
41-612-672-424
Copyright © University of Basel
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Cancer
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||