Home > Press > Simulation of chiral edge states in a quantum system
Theoretiker Marcello Dalmonte Foto: Uni Innsbruck |
Abstract:
Condensed matter physics remains a field of study with many puzzles to solve. New studies have become possible due to advances in experimental quantum physics. In particular, ultracold atoms in optical lattices and an environment that is fully tunable and controllable represent an ideal system for studying the physics of condensed matter problems. One of these phenomena can be observed in connection with the quantum Hall effect: When certain materials are subjected to a strong magnetic field, the electrons cannot move in a singular circular direction at the edges anymore but repeatedly bounce against the edge, where they are reflected. This corresponds to skipping trajectories. As a macroscopic consequence so called chiral currents, which move in the opposite direction at the opposite edges, can be observed at the boundaries of such two-dimensional materials. "You could compare it to a river where the fish swim towards the right on one bank and towards the left on the other bank," explains theoretical physicist Marcello Dalmonte from the Institute for Theoretical Physics at the University of Innsbruck and a member of Peter Zoller's research group at the Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences.
Hopping atoms
Already ten years ago, Peter Zoller's research team proposed a way to simulate chiral currents with neutral atoms. This idea combined with the synthetic dimension approach, put forward by the Barcelona group at ICFO, was picked up and implemented by physicists at the European Laboratory for Nonlinear Spectroscopy (LENS) in Florence collaborating with theoretical physicists in Innsbruck. In their experiment, the scientists confined an ultracold gas of ytterbium atoms in an optical lattice generated by laser beams. As it is difficult to reproduce the structure of two-dimensional condensed matter systems, the physicists use a new approach: They used a one-dimensional chain of atoms and produced the second dimension synthetically. The dynamics along the synthetic dimension are generated by laser-induced hopping between two or three internal spin states. "From a theoretical perspective this hopping into different internal spin states represents the same concept as the geometrical hopping of electrons at the edges of a condensed matter system," explains Marcello Dalmonte. Together with Marie Rider and Peter Zoller, Marcello Dalmonte laid the theoretical groundwork for the experiment and suggested how to observe this phenomenon. The observations published in Science show that the particles move mostly to the right at one edge and to the left on the other edge. "This behavior is very similar to chiral currents known in condensed matter physics," says Dalmonte. This simulation of exotic effects opens up new ways for the researchers to study other new physical phenomena, for example, in connection with quantum Hall effects, the study of anyons in atomic systems. These exotic quasi particles are suggested to being suitable as the main building block for topological quantum computers.
###
The researchers are supported, among others, by the Austrian Science Fund (FWF), the European Research Council (ERC) and the European Union.
####
For more information, please click here
Contacts:
Marcello Dalmonte
43-512-507-4792
Copyright © University of Innsbruck
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Finding quantum order in chaos May 17th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Quantum Computing
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Quantum nanoscience
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||