Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Simulation of chiral edge states in a quantum system

Theoretiker Marcello Dalmonte Foto: Uni Innsbruck
Theoretiker Marcello Dalmonte

Foto: Uni Innsbruck

Abstract:
Condensed matter physics remains a field of study with many puzzles to solve. New studies have become possible due to advances in experimental quantum physics. In particular, ultracold atoms in optical lattices and an environment that is fully tunable and controllable represent an ideal system for studying the physics of condensed matter problems. One of these phenomena can be observed in connection with the quantum Hall effect: When certain materials are subjected to a strong magnetic field, the electrons cannot move in a singular circular direction at the edges anymore but repeatedly bounce against the edge, where they are reflected. This corresponds to skipping trajectories. As a macroscopic consequence so called chiral currents, which move in the opposite direction at the opposite edges, can be observed at the boundaries of such two-dimensional materials. "You could compare it to a river where the fish swim towards the right on one bank and towards the left on the other bank," explains theoretical physicist Marcello Dalmonte from the Institute for Theoretical Physics at the University of Innsbruck and a member of Peter Zoller's research group at the Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences.

Simulation of chiral edge states in a quantum system

Innsbruck, Austria | Posted on September 26th, 2015

Hopping atoms

Already ten years ago, Peter Zoller's research team proposed a way to simulate chiral currents with neutral atoms. This idea combined with the synthetic dimension approach, put forward by the Barcelona group at ICFO, was picked up and implemented by physicists at the European Laboratory for Nonlinear Spectroscopy (LENS) in Florence collaborating with theoretical physicists in Innsbruck. In their experiment, the scientists confined an ultracold gas of ytterbium atoms in an optical lattice generated by laser beams. As it is difficult to reproduce the structure of two-dimensional condensed matter systems, the physicists use a new approach: They used a one-dimensional chain of atoms and produced the second dimension synthetically. The dynamics along the synthetic dimension are generated by laser-induced hopping between two or three internal spin states. "From a theoretical perspective this hopping into different internal spin states represents the same concept as the geometrical hopping of electrons at the edges of a condensed matter system," explains Marcello Dalmonte. Together with Marie Rider and Peter Zoller, Marcello Dalmonte laid the theoretical groundwork for the experiment and suggested how to observe this phenomenon. The observations published in Science show that the particles move mostly to the right at one edge and to the left on the other edge. "This behavior is very similar to chiral currents known in condensed matter physics," says Dalmonte. This simulation of exotic effects opens up new ways for the researchers to study other new physical phenomena, for example, in connection with quantum Hall effects, the study of anyons in atomic systems. These exotic quasi particles are suggested to being suitable as the main building block for topological quantum computers.

###

The researchers are supported, among others, by the Austrian Science Fund (FWF), the European Research Council (ERC) and the European Union.

####

For more information, please click here

Contacts:
Marcello Dalmonte

43-512-507-4792

Copyright © University of Innsbruck

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Quantum Computing

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Quantum nanoscience

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Programmable electron-induced color router array May 14th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project