Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A glimpse into the nanoworld of lymphocyte cell membranes: University of Freiburg researchers have applied super-resolution methods to study the organization of receptors on B lymphocytes

Researchers previously assumed that receptors such as the antigen receptors of class Immunoglobulin M and Immunoglobulin D are freely diffusing and equally distributed molecules on the membrane (image above). However, the new study shows that these antigen receptors are organized in different membrane compartments, also called 'protein islands', with diameters of 150-200 nanometers (image below). This finding is another indication that, at nanoscale distance, the proteins on cellular membranes are highly organized.
CREDIT: Research Group Reth/BIOSS
Researchers previously assumed that receptors such as the antigen receptors of class Immunoglobulin M and Immunoglobulin D are freely diffusing and equally distributed molecules on the membrane (image above). However, the new study shows that these antigen receptors are organized in different membrane compartments, also called 'protein islands', with diameters of 150-200 nanometers (image below). This finding is another indication that, at nanoscale distance, the proteins on cellular membranes are highly organized.

CREDIT: Research Group Reth/BIOSS

Abstract:
Antigen receptors on B lymphocytes sense foreign molecules, such as pathogens or vaccines, and activate the B cells to produce antibodies that protect humans against many diseases. Prof. Dr. Michael Reth, Scientific Director of BIOSS Centre for Biological Signalling Studies, and his group have applied three different super-resolution methods to study the distribution of the two major classes of antigen receptors on mature B lymphocytes: IgM and IgD. It had been previously assumed that all proteins on the membrane, including receptors, are freely diffusing molecules that only become organized upon binding to specific ligands. Reth's group found out that IgM and IgD receptors are organized in protein islands. The researchers from the University of Freiburg collaborated with Prof. Dr. Hassan Jumaa from the University of Ulm/Germany and Prof. Dr. Björn F. Lillemeier from the Salk Institute in La Jolla/USA. The imaging analysis was conducted in collaboration with Dr. Olaf Ronneberger's group, computer scientist at the University of Freiburg. The team has published their research findings in the journal Science Signaling. The researchers hope that these new insights into the nanoscale organization of antigen receptors will support the design of more efficient vaccines or better treatments for B cell tumors where membrane organization is often altered.

A glimpse into the nanoworld of lymphocyte cell membranes: University of Freiburg researchers have applied super-resolution methods to study the organization of receptors on B lymphocytes

Freiburg, Germany | Posted on September 16th, 2015

Using two-color direct stochastical optical reconstruction microscopy (dSTORM), the researchers found that IgM and IgD reside on the plasma membrane of resting B cells in separated protein islands of approximately 150 and 240 nanometers (nm), respectively. This class-specific compartmentalization of the antigen receptors is also detected by transmission electron microscopy (TEM) and Fab-based proximity-ligation assay (Fab-PLA) studies. Upon B cell activation, the IgM and IgD protein islands became smaller and the two classes of receptors are now found in close proximity to each other.

These studies provide direct evidence for the nanoscale compartmentalization of the lymphocyte membrane. Furthermore, they suggest that upon B cell activation, the different IgM and IgD protein islands form nano-synapses which allow the exchange of lipids and proteins. This could explain how the IgM class antigen receptors find contact to Raft-associated lipids and proteins. The association of IgM with these lipids is a well-known hallmark of B cell activation.

Michael Reth is professor of molecular immunology at the Institute of Biology III at the University of Freiburg and speaker of the Cluster of Excellence BIOSS Centre for Biological Signalling Studies. Palash Maity, lead author of the study, is a postdoc at BIOSS and at the Max Planck Institute of Immunobiology and Epigenetics in Freiburg. Olaf Ronneberger is working at the Institute of Computer Science. Ronneberger and Hassan Jumaa are both members of BIOSS Centre for Biological Signalling Studies. This study is part of the BIOSS nanoscale explorer program (BiNEP), which is a focus topic in the BIOSS-2 research program. In this program, BIOSS is developing methods to better understand the nanoworld of signaling processes, beyond the 250 nm diffraction limit of visible light.

###

Original publication:

Palash Chandra Maity, Amy Blount, Hassan Jumaa, Olaf Ronneberger, Björn F. Lillemeier and Michael Reth (2015). B cell antigen receptors of the IgM and IgD classes are clustered in different protein islands that are altered during B cell activation. Science Signaling.

####

For more information, please click here

Contacts:
Prof. Dr. Michael Reth
Institute of Biology III and BIOSS Centre for Biological Signalling Studies
University of Freiburg
Phone: +49 (0)761 / 203 - 97663


Katrin Albaum

49-761-203-97662

Copyright © BIOSS Centre for Biological Signalling Studies

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cancer

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project