Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Science provides new way to peer into pores: Rice University lab finds technique to characterize nanoscale spaces in porous materials

The paths fluorescent particles take as they diffuse through a porous nanoscale structure reveal the arrangement of the pores through a technique developed by scientists at Rice University.
CREDIT: Landes Research Group/Rice University
The paths fluorescent particles take as they diffuse through a porous nanoscale structure reveal the arrangement of the pores through a technique developed by scientists at Rice University.

CREDIT: Landes Research Group/Rice University

Abstract:
Rice University scientists led a project to "see" and measure the space in porous materials, even if that space is too small or fragile for traditional microscopes.

Science provides new way to peer into pores: Rice University lab finds technique to characterize nanoscale spaces in porous materials

Houston, TX | Posted on September 9th, 2015

The Rice lab of chemist Christy Landes invented a technique to characterize such nanoscale spaces, an important advance toward her group's ongoing project to efficiently separate "proteins of interest" for drug manufacture. It should also benefit the analysis of porous materials of all kinds, like liquid crystals, hydrogels, polymers and even biological substances like cytosol, the compartmentalized fluids in cells.

The research with collaborators at the University of California, Los Angeles (UCLA) and Kansas State University appears in the American Chemical Society journal ACS Nano.

It's easy to use a fluorescent chemical compound to tag, or "label," a material and take a picture of it, Landes said. "But what if the thing you want a picture of is mostly nothing? That's the problem we had to solve to understand what was going on in the separation material."

The team aims to improve protein separation in a process called chromatography, in which solutions flow through porous material in a column. Because different materials travel at different speeds, the components separate and can be purified.

"We learned that in agarose, a porous material used to separate proteins, the clustering of charges is very important," Landes said. While the protein project succeeded, "when we matched experimental data to our theory, there was something additional contributing to the separation that we couldn't explain."

The answer appeared to be with how charged particles like nanoscale ligands arranged themselves in the pores. "It was the only possible explanation," Landes said. "So we needed a way to image the pores."

Standard techniques like atomic force, X-ray and electron microscopy would require samples to be either frozen or dried. "That would either shrink or swell or change their structures," she said.

It occurred to the team to combine their experience with the Nobel Prize-winning super-resolution microscopy and fluorescence correlation spectroscopy techniques. Super-resolution microscopy is a way to see objects at resolutions below the diffraction limit, which restricts the viewing of things that are smaller than the wavelength of light directed at them.

Correlation spectroscopy is a way to measure fluorescent particles as they fluctuate. By crunching data collected via a combination of super-resolution microscopy and correlation spectroscopy, the researchers mapped slices of the material to see where charged particles tended to cluster.

The combined technique, which they call fcsSOFI (for "fluorescence correlation spectroscopy super-resolution optical fluctuation imaging"), measures fluorescent tags as they diffuse in the pores, which allows researchers to simultaneously characterize dimensions and dynamics within the pores. The lab tested its technique on both soft agarose hydrogels and lyotropic liquid crystals. Next, they plan to extend their mapping to three-dimensional spaces.

"We now have both pieces of our puzzle: We can see our proteins interacting with charges within our porous material, and we can measure the pores," Landes said. "This has direct relevance to the protein separation problem for the $100 billion pharmaceutical industry."

###

Co-authors of the paper are Rice alumnus Lydia Kisley and Rice graduate students Lawrence Tauzin and Bo Shuang; Rice Quantum Institute/Smalley-Curl Institute summer undergraduate student Rachel Brunetti of Scripps College, Claremont, Calif.; graduate student Xiyu Yi and Shimon Weiss, a professor of chemistry and biochemistry, at UCLA; and graduate student Alec Kirkeminde and Daniel Higgins, a professor of chemistry, at Kansas State.

The Welch Foundation, the National Science Foundation, the Willard Chair at UCLA and the Department of Energy supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,888 undergraduates and 2,610 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for best quality of life and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:
David Ruth

713-348-6327

Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Landes Research Group:

Wiess School of Natural Sciences:

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Display technology/LEDs/SS Lighting/OLEDs

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Hydrogels

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanomedicine

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Materials/Metamaterials/Magnetoresistance

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Nanobiotechnology

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Low-cost formulation reduces dose and increases efficacy of drug against worms: Praziquantel, usually administered in large tablets, is the only anthelmintic available on the market. New form of presentation uses nanotechnology and facilitates use by children and pets May 16th, 2025

Research partnerships

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project