Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Effects of Calcium Carbonate as Drug Nanocarriers Studied in Iran

Abstract:
The use of calcium carbonate in drug delivery applications has been highly interesting to researchers in recent years.

Effects of Calcium Carbonate as Drug Nanocarriers Studied in Iran

Tehran, Iran | Posted on September 7th, 2015

Being safe, available, cost effective, biocompatibility, slow release of drug, sorption potential, bone tissue recovery and easy production are among the advantages of calcium carbonate for drug delivery purposes.

In this research, calcium carbonate nanoparticles were studied as drug delivery carriers to transfer various types of medications in a smart manner. These nanoparticles have shown very good ability to carry drugs into cancerous tissues. The properties of particles depend on pH value of the environment so calcium carbonate is able to slowly release drug in a controlled manner. Therefore, calcium carbonate nanoparticles can be introduced as an effective and harmless method for cancer treatment. However, further investigations and experiments are required.

This research presents updated information in brief about the production and application of calcium carbonate inorganic nanostructures as anticancer drug carriers, and their delivery into the target tissues. Various applications of these nanoparticles and their properties, including dependency on pH value and biodegradability, are among the issues studied in this research.

Results of the research have been published in Expert Opin Drug Deliv., vol. 25, issue 1, 2015, pp. 1-12.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project