Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells

When the nanoclew comes into contact with a cell, the cell absorbs the nanoclew completely -- swallowing it and wrapping it in a protective sheath called an endosome. But the nanoclews are coated with a positively charged polymer that breaks down the endosome, setting the nanoclew free inside the cell. The CRISPR-Cas9 complexes can then free themselves from the nanoclew to make their way to the nucleus.
CREDIT: North Carolina State University
When the nanoclew comes into contact with a cell, the cell absorbs the nanoclew completely -- swallowing it and wrapping it in a protective sheath called an endosome. But the nanoclews are coated with a positively charged polymer that breaks down the endosome, setting the nanoclew free inside the cell. The CRISPR-Cas9 complexes can then free themselves from the nanoclew to make their way to the nucleus.

CREDIT: North Carolina State University

Abstract:
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have for the first time created and used a nanoscale vehicle made of DNA to deliver a CRISPR-Cas9 gene-editing tool into cells in both cell culture and an animal model.

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells

Raleigh, NC | Posted on August 30th, 2015

The CRISPR-Cas system, which is found in bacteria and archaea, protects bacteria from invaders such as viruses. It does this by creating small strands of RNA called CRISPR RNAs, which match DNA sequences specific to a given invader. When those CRISPR RNAs find a match, they unleash Cas9 proteins that cut the DNA. In recent years, the CRISPR-Cas system has garnered a great deal of attention in the research community for its potential use as a gene editing tool - with the CRISPR RNA identifying the targeted portion of the relevant DNA, and the Cas protein cleaving it.

But for Cas9 to do its work, it must first find its way into the cell. This work focused on demonstrating the potential of a new vehicle for directly introducing the CRISPR-Cas9 complex - the entire gene-editing tool - into a cell.

"Traditionally, researchers deliver DNA into a targeted cell to make the CRISPR RNA and Cas9 inside the cell itself - but that limits control over its dosage," says Chase Beisel, co-senior author of the paper and an assistant professor in the department of chemical and biomolecular engineering at NC State. "By directly delivering the Cas9 protein itself, instead of turning the cell into a Cas9 factory, we can ensure that the cell receives the active editing system and can reduce problems with unintended editing."

"Our delivery mechanism resembles a ball of yarn, or clew, so we call it a nanoclew," says Zhen Gu, co-senior author of the paper and an assistant professor in the joint biomedical engineering program at NC State and UNC-CH. "Because the nanoclew is made of a DNA-based material, it is highly biocompatible. It also self-assembles, which makes it easy to customize."

The nanoclews are made of a single, tightly-wound strand of DNA. The DNA is engineered to partially complement the relevant CRISPR RNA it will carry, allowing the CRISPR-Cas9 complex - a CRISPR RNA bound to a Cas9 protein -- to loosely attach itself to the nanoclew. "Multiple CRISPR-Cas complexes can be attached to a single nanoclew," says Wujin Sun, lead author of the study and Ph.D. student in Gu's lab.

When the nanoclew comes into contact with a cell, the cell absorbs the nanoclew completely - swallowing it and wrapping it in a protective sheath called an endosome. But the nanoclews are coated with a positively-charged polymer that breaks down the endosome, setting the nanoclew free inside the cell. The CRISPR-Cas9 complexes can then free themselves from the nanoclew to make their way to the nucleus. And once a CRISPR-Cas9 complex reaches the nucleus, gene editing begins.

To test the nanoclew CRISPR-Cas delivery system, the researchers treated cancer cell cultures and tumors in mice. The relevant cancer cells had been modified to express a fluorescent protein. In short, they glowed. The CRISPR RNAs on the nanoclews were designed to target the DNA in the cancer cell that was responsible for making the fluorescent proteins. If the glowing stopped, the nanoclews worked.

"And they did work. More than a third of cancer cells stopped expressing the fluorescent protein," Beisel says.

"This study is a proof of concept, and additional work needs to be done - but it's very promising," Gu says.

###

The paper, "Self-Assembled DNA Nanoclews for the Efficient Delivery of CRISPR-Cas9 for Genome Editing," is published in the journal Angewandte Chemie. Co-authors include Jordan Hall, an undergraduate at NC State; and Wenyan Ji, Quanyin Hu and Chao Wang of the joint biomedical engineering program. The work was supported by the NC TraCS, NIH's Clinical and Translational Science Awards at UNC-CH, grant number 1UL1TR001111 and by National Science Foundation under grant MCB-1452902.

####

For more information, please click here

Contacts:
Matt Shipman

919-515-6386

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Food/Agriculture/Supplements

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

Nanobiotechnology

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project