Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A new technique to make drugs more soluble

Credit: Eliza Grinnell, Harvard SEAS
Credit: Eliza Grinnell, Harvard SEAS

Abstract:
Before Ibuprofen can relieve your headache, it has to dissolve in your bloodstream. The problem is Ibuprofen, in its native form, isn’t particularly soluble. Its rigid, crystalline structures — the molecules are lined up like soldiers at roll call — make it hard to dissolve in the bloodstream. To overcome this, manufacturers use chemical additives to increase the solubility of Ibuprofen and many other drugs, but those additives also increase cost and complexity.

A new technique to make drugs more soluble

Cambridge, MA | Posted on August 28th, 2015

The key to making drugs by themselves more soluble is not to give the molecular soldiers time to fall in to their crystalline structures, making the particle unstructured or amorphous.

Researchers from Harvard John A. Paulson School of Engineering and Applied Science (SEAS) have developed a new system that can produce stable, amorphous nanoparticles in large quantities that dissolve quickly.

But that’s not all. The system is so effective that it can produce amorphous nanoparticles from a wide range of materials, including for the first time, inorganic materials with a high propensity towards crystallization, such as table salt.

These unstructured, inorganic nanoparticles have different electronic, magnetic and optical properties from their crystalized counterparts, which could lead to applications in fields ranging from materials engineering to optics.

David A. Weitz, Mallinckrodt Professor of Physics and Applied Physics and an associate faculty member of the Wyss Institute for Biologically Inspired Engineering at Harvard, describes the research in a paper published today in Science.

“This is a surprisingly simple way to make amorphous nanoparticles from almost any material,” said Weitz. “It should allow us to quickly and easily explore the properties of these materials. In addition, it may provide a simple means to make many drugs much more useable.”

The technique involves first dissolving the substances in good solvents, such as water or alcohol. The liquid is then pumped into a nebulizer, where compressed air moving twice the speed of sound sprays the liquid droplets out through very narrow channels. It’s like a spray can on steroids. The droplets are completely dried between one to three microseconds from the time they are sprayed, leaving behind the amorphous nanoparticle.

At first, the amorphous structure of the nanoparticles was perplexing, said Esther Amstad, a former postdoctoral fellow in Weitz’ lab and current assistant professor at EPFL in Switzerland. Amstad is the paper’s first author. Then, the team realized that the nebulizer’s supersonic speed was making the droplets evaporate much faster than expected.

“If you’re wet, the water is going to evaporate faster when you stand in the wind,” said Amstad. “The stronger the wind, the faster the liquid will evaporate. A similar principle is at work here. This fast evaporation rate also leads to accelerated cooling. Just like the evaporation of sweat cools the body, here the very high rate of evaporation causes the temperature to decrease very rapidly, which in turn slows down the movement of the molecules, delaying the formation of crystals.”

These factors prevent crystallization in nanoparticles, even in materials that are highly prone to crystallization, such as table salt. The amorphous nanoparticles are exceptionally stable against crystallization, lasting at least seven months at room temperature.

The next step, Amstad said, is to characterize the properties of these new inorganic amorphous nanoparticles and explore potential applications.

“This system offers exceptionally good control over the composition, structure, and size of particles, enabling the formation of new materials,” said Amstad. “ It allows us to see and manipulate the very early stages of crystallization of materials with high spatial and temporal resolution, the lack of which had prevented the in-depth study of some of the most prevalent inorganic biomaterials. This systems opens the door to understanding and creating new materials.”

Full bibliographic information

Science, "Production of amorphous nanoparticles by supersonic spray-drying with a microfluidic nebulator" by Esther Amstad, Manesh Gopinadhan, Christian Holtze, Chinedum O. Osuji, Michael P. Brenner, Frans Spaepen, David A. Weitz

Notes for editors

This research was coauthored by Manesh Gopinadhan, Christian Holtze, Chinedum O. Osuji, Michael P. Brenner, the Glover Professor of Applied Mathematics and Applied Physics and Professor of Physics, and Frans Spaepen, the John C. and Helen F. Franklin Professor of Applied Physics. It was supported by the National Science Foundation, Harvard MRSEC and BASF through the North American Center for Research on Advanced Materials (NORA), headed by Dr. Marc Schroeder.

####

About Harvard School of Engineering and Applied Sciences
The Harvard School of Engineering and Applied Sciences (SEAS) serves as the connector and integrator of Harvard's teaching and research efforts in engineering, applied sciences, and technology.

For more information, please click here

Contacts:
Leah Burrows

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project