Home > Press > Glitter from silver lights up Alzheimer's dark secrets
The picture shows toxic Alzheimer's amyloid beta molecules landing on a fake cell membrane, wrapped around a silver nanoparticle. A laser, with help from the silver particle, lights up the molecule to reveal its structure.
Copyright Debanjan Bhowmik |
Abstract:
Scientists have caught a glimpse of the elusive toxic form of the Alzheimer's molecule, during its attempt to bore into the outer covering of a cell decoy, using a new method involving laser light and fat-coated silver nano-particles.
While the origin of Alzheimer's Disease, one that robs the old of their memory, is still hotly debated, it is likely that a specific form of the Amyloid beta molecule, which is able to attack cell membranes, is a major player. Defeating this molecule would be easier if its shape and form were known better, but that has proven to be a difficult task until now.
"Everybody wants to make the key to solve Alzheimer's Disease, but we don't know what the lock looks like. We now have a glimpse of something which could be the lock. May be it's still not the real thing, but as of now, this is our best bet", says Sudipta Maiti, who co-directed the efforts with P. K. Madhu (both from TIFR). If they are right, then designing the key, i.e. making a drug molecule which can attack the lock, may be more achievable now.
The lock looks like a bunch of amyloid beta molecules in the shape of a hairpin, but with a twist. Debanjan Bhowmik, the lead contributor of the study says "This has been suspected earlier, but what we found was an unexpected twist in the structure, now becoming a beta-hairpin - very different from the typical hairpin structure people imagined. This may allow these bunch of amyloid beta molecules to form toxic pores in the cell membranes".
The findings published in the journal ACS Nano this week by a joint team of researchers from the Tata Institute of Fundamental Research, Indian Institute of Science and the University of Toronto, have cracked the problem that has eluded scientists for years, by using a modified version of Raman Spectroscopy.
They studied a tiny laser-induced signal from the amyloid beta which reported their shape. A critical modification in the original Raman Spectroscopy technique allowed the measurement of tiny signals that would otherwise have gone unnoticed. They encased silver nanoparticles in a fat layer ("membrane") that mimicked the outer membranes of living cells. According to co-author Gilbert Walker, "While the amyloid beta got fooled by it and stuck to the membrane, the silver inside enhanced the signal to a measurable level and acted as a light beacon to reveal the peptide signature". The technique offers promise for deciphering the shape of many such membrane molecules, some of which may be related to other types of diseases.
Each research team brought something different to the table. As Jaydeep Basu, who led the IISc team, says, "It's a great example of how contemporary science breaks all barriers to bring people together for the pure love of science and the quest for the unknown!" One hopes that the search for the key to solve Alzheimer's has taken a step forward with this finding.
####
For more information, please click here
Contacts:
Sudipta Maiti
Copyright © Tata Institute of Fundamental Research
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||