Home > Press > Intractable pain may find relief in tiny gold rods
![]() |
Scientists have developed a technique that could lead to therapies for pain relief in people with intractable pain, potentially including cancer-related pain. CREDIT: Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS) |
Abstract:
A team of scientists at Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS) has developed a novel technique using tiny gold rods to target pain receptors.
Gold nanorods are tiny rods that are 1-100 nanometers wide and long. In comparison, a human hair is 100,000 nanometers wide. The team coated gold nanorods with a special type of protein that transports fat within the body known as a lipoprotein. This allowed the nanorods to bind efficiently to nerve cell membranes bearing a pain receptor called TRPV1 (transient receptor potential vanilloid type 1). Near-infrared light was then applied to the nanorod-coated pain receptors. The nanorods heated up, activating the pain receptors to allow an influx of calcium ions through the membrane. Prolonged activation of TRPV1 is known to subsequently lead to their desensitization, bringing pain relief. Importantly, heating the gold nanorods enabled safe activation of the TRPV1 pain receptors alone, without affecting the membrane in which they lie.
Previous studies had shown that magnetic nanoparticles (tiny particles in the nano-range made out of magnetic materials) are also able to activate TRPV1 receptors by applying a magnetic field. The target cells in this method, however, require genetic modification for it to work. Using lipoprotein-coated gold nanorods does not require genetic modification of the target cells. Also, the nanorods were found to have at least 1,000 times greater efficiency than magnetic nanoparticles in heat generation and in activating TRPV1 receptors.
"The gold nanorods can be retained in the body for a prolonged period," says Tatsuya Murakami, the principal investigator of this study. "Local injection of our gold nanorods might enable repetitive and on-demand treatment for people experiencing intractable pain because prior genetic engineering of the target cells is unnecessary."
The study was published in Angewandte Chemie International Edition on August 6th, 2015.
####
For more information, please click here
Contacts:
Tatsuya Murakami
81-757-539-859
Copyright © Institute for Integrated Cell-Material Sciences, Kyoto Unive
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |