Home > Press > Lighting up cancer cells to identify low concentrations of diseased cells: New study published in inaugural issue of Applied Materials Today describes development of 'Heavy metal cancer spies'
Abstract:
Researchers in China have developed tiny nanocrystals that could be used in the next generation of medical imaging technologies to light up cancer cells. In a study published in the inaugural issue of the journal Applied Materials Today, a new rapid, online only publication, the team of researchers describe how they make these films which are based on the heavy metals lanthanum and europium.
Dr. Yaping Du of Xi'an Jiaotong University, China, and colleagues have developed a way to make high-quality nanocrystals of lanthanide oxybromides, where the lanthanide metal can be lanthanum, europium, gadolinium or terbium. They produce the materials by heating a readily available precursor material, which also allows them to incorporate triply charged europium ions, Eu3+, as "dopants" into any of the LaOBr nanocrystals.
In the study team explains that their process allows them to very precisely control the exact size and shape of the nanocrystals and it is this that allows them to fine tune the color of the light these materials produce when stimulated with ultraviolet light or electricity. Their tests with transmission electron microscopy on the nanocrystals, which form as ultrathin films, plates and tiny particles, reveal the desired quality and uniformity. X-ray crystallography and ultraviolet spectroscopy provide additional detailed evidence about the internal structure of the nanocrystals at the atomic level.
Once they had established the chemical and physical details about the nanocrystals, the team then tested the particles as "staining" agents on a tissue sample containing liver cancer cells held on a microscope slide. They found that these diseased cells could take up the nanocrystals, whereas healthy cells do not; they preferentially "stain" the cancer cells, which can clearly be seen under the microscope through their bright luminescence. Such targeting and ease of identification of cancer cells could allow oncologists to spot even tiny numbers of diseased cells in a biopsy sample.
The team also suggests that the bright luminescence of their lanthanide oxybromides might also be used in low-energy lighting applications as an alternative to compact fluorescent bulbs and light emitting diodes (LEDs).
"The results reported by Du et al could have significant impact on the fields of nanomaterials for medical imaging and lighting," says Prof Manish Chhowalla of Rutgers University, and Editor-in-Chief of Applied Materials Today. "We are pleased that the authors have chosen Applied Materials Today to publish their work; since its launch several months ago the journal has received very high quality papers for review and hope to see this trend continue."
###
Notes for editors
"Synthesis of High-Quality Lanthanide Oxybromides Nanocrystals with Single-Source Precursor for Promising Applications in Cancer Cells Imaging" by Dong Yan; Bo Lei; Bo Chen; Xuejun Wu; Zhengqing Liu; Na Li; Juan Ge; Yumeng Xue; Yaping Du, Ph.D; Zhiping Zheng; Hua Zhang. It is published online in Applied Materials Today.
####
About Elsevier
Elsevier is a world-leading provider of information solutions that enhance the performance of science, health, and technology professionals, empowering them to make better decisions, deliver better care, and sometimes make groundbreaking discoveries that advance the boundaries of knowledge and human progress. Elsevier provides web-based, digital solutions -- among them ScienceDirect, Scopus, Elsevier Research Intelligence and ClinicalKey-- and publishes over 2,500 journals, including The Lancet and Cell, and more than 33,000 book titles, including a number of iconic reference works. Elsevier is part of RELX Group plc, a world-leading provider of information solutions for professional customers across industries. www.elsevier.com
About Materials Today
Materials Today is a community dedicated to the creation and sharing of materials science knowledge and experience. Supported by Elsevier, we publish high impact peer-reviewed journals, organize academic conferences, broadcast educational webinars and so much more.
For more information, please click here
Contacts:
Dr. Stewart Bland
44-186-584-3124
Copyright © Elsevier
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Copies of the paper are freely available on registration via the Materials Today website:
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Cancer
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||