Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A thin ribbon of flexible electronics can monitor health, infrastructure

Stretchy, bendable electronics could have many uses, such as monitoring patients' health and keeping tabs on airplanes.
CREDIT: Benjamin Leever, Ph.D.
Stretchy, bendable electronics could have many uses, such as monitoring patients' health and keeping tabs on airplanes.

CREDIT: Benjamin Leever, Ph.D.

Abstract:
Title

Development of flexible hybrid electronics materials and processes for Air Force applications

Abstract

By combining thinned devices based on inorganic semiconductors with components & interconnects that are 3D printed/additively manufactured on non-traditional substrates, Flexible Hybrid Electronics (FHE) can deliver significant size, weight, and power (SWaP) benefits without sacrificing performance. FHE are expected to impact a range of Air Force applications including: wearable electronics and sensors for monitoring airman health/performance; conformal electronics and antennas for maximizing space efficiency and reducing aerodynamic drag; and inherently more durable circuits that will withstand the extreme strain, shock, and vibration environments typical of Air Force missions.

Related to these goals, we are developing approaches to inject and print gallium-based liquid metal alloys into varied materials for stretchable and reconfigurable electronics. For energy devices we have demonstrated solution-processable approaches to fabricate organic photovoltaic devices on nearly arbitrary surfaces including PET and polymer reinforced polymer composites. We have also fabricated Li-ion batteries based on structurally resilient carbon nanotube-based electrodes that have survived thousands of flexing cycles. The presentation will also discuss the development of silver inks as an interconnect material for flexible Si CMOS ICs on elastomers. Finally, initial molecular dynamics based approaches to model the interaction of inks on various surfaces will also be described.

A thin ribbon of flexible electronics can monitor health, infrastructure

Boston, MA | Posted on August 17th, 2015

A new world of flexible, bendable, even stretchable electronics is emerging from research labs to address a wide range of potentially game-changing uses. The common, rigid printed circuit board is slowly being replaced by a thin ribbon of resilient, high-performance electronics. Over the last few years, one team of chemists and materials scientists has begun exploring military applications in harsh environments for aircraft, explosive devices and even combatants themselves.

Researchers will provide an update on the latest technologies, as well as future research plans, at the 250th National Meeting & Exposition of the American Chemical Society (ACS). ACS is the world's largest scientific society. The meeting takes place here through Thursday.

"Basically, we are using a hybrid technology that mixes traditional electronics with flexible, high-performance electronics and new 3-D printing technologies," says Benjamin J. Leever, Ph.D., who is at the Air Force Research Laboratory at Wright-Patterson Air Force Base. "In some cases, we incorporate 'inks,' which are based on metals, polymers and organic materials, to tie the system together electronically. With our technology, we can take a razor-thin silicon integrated circuit, a few hundred nanometers thick, and place it on a flexible, bendable or even foldable, plastic-like substrate material," he says.

To allow electronics to be bendable or stretchable or even change their configuration after fabrication, the Wright-Patterson team has turned to liquid gallium alloys as an electrical interconnect material, Leever says. "While these liquid alloys typically oxidize within minutes and become essentially useless," he says, "the team has been able to dramatically reduce the effects of the oxidation through the use of ionic species confined to the walls of microvascular channels within the flexible substrates."

The result is thin, foldable material that allows the circuitry to fit into extremely tight spaces and even to be integrated into complex curved surfaces, such as an airplane's wing, or even a person's skin.

In aircraft applications, Leever explains, the hybrid flexible system can be used to monitor stresses and strains and report this information through miniature embedded antennas to ground crews or a pilot. The researchers also are developing the same approach to monitor pilots' health. This involves a biosensor system that can measure heartbeat, hydration levels, sweat, temperature and other vital signs through miniature circuitry. The system would be embedded on a flexible, wearable patch and would include an antenna to transmit these biometric signals to the pilot or a ground team. The patch will "breathe," bend and stretch, and will provide real-time measurements of metrics that indicate fatigue or potential cognitive problems, Leever notes.

Another military application the Air Force is pursuing is use of a flexible hybrid system in "bunker buster" bombs, which detonate after penetrating deep in the earth. Because of the system's toughness, Leever says, initial testing suggests that the flexible circuitry would remain viable and could detonate the weapon after surviving the initial impact of ground contact after being dropped from aircraft.

In the civilian world, Leever foresees use of flexible systems to monitor the conditions of bridges and other types of infrastructure in real time. He also points to medical applications, such as physical feedback for athletes as they exercise and real-time hospital monitoring for caregivers concerned about changes in a patient's vital signs. This type of monitoring dispenses with the need for the bulky electrodes and wiring that normally are associated with close medical surveillance.

"Overall, the military has the advantage of being able to move ahead with potentially higher risk research," he explains. "Commercial investors want a clear demonstration before making an investment. The military can pursue possibly transformational applications at earlier stages if we see a promising approach to realize and advance a technology's revolutionary potential. When we are successful, the commercial sector directly benefits."

Leever adds that the Wright-Patterson team is part of a newly created Department of Defense-led Flexible Hybrid Electronics Manufacturing Innovation Institute, which was announced by President Barack Obama last December. Over the next five years, $75 million will be offered in matching grants to spur domestic development of flexible hybrid electronics manufacturing.

####

About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 158,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
617-954-3971 (Boston Press Center, Aug. 16-19)

Michael Bernstein
202-872-6042 (D.C. Office)
301-275-3221 (Cell)


Katie Cottingham, Ph.D.
301-775-8455 (Cell)

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Flexible Electronics

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Aerospace/Space

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Events/Classes

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project