Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Exercise-induced hormone irisin is not a 'myth'

http://dx.doi.org/10.1016/j.cmet.2015.08.001|Cell Metabolism, Jedrychowski et al.: "Detection and Quantitation of Circulating Human Irisin by Tandem Mass Spectrometry":
http://dx.doi.org/10.1016/j.cmet.2015.08.001|Cell Metabolism, Jedrychowski et al.: "Detection and Quantitation of Circulating Human Irisin by Tandem Mass Spectrometry":

Abstract:
Irisin, a hormone linked to the positive benefits of exercise, was recently questioned to exist in humans. Two recent studies pointed to possible flaws in the methods used to identify irisin, with commercially available antibodies. In Cell Metabolism on August 13, the Harvard scientists who discovered irisin address this contentious issue by showing that human irisin circulates in the blood at nanogram levels and increases during exercise.

Exercise-induced hormone irisin is not a 'myth'

Cambridge, MA | Posted on August 14th, 2015

Senior study author Bruce Spiegelman of Dana-Farber Cancer Institute and Harvard Medical School says that the confusion over irisin comes down to disagreement over how irisin protein is made in skeletal muscle cells and the detection limits of protocols. He and co-author Steven Gygi turned to state-of-the-art quantitative mass spectrometry techniques to show that the human hormone uses a rare signal ATA (start codon) to initiate its production (translation) rather than the usual ATG.

The use of the ATA, rather than the more common ATG, had led some investigators to conclude that the human gene was a pseudogene--a gene that serves no function. But alternative start codons account for a few of all genes and are usually an indication of complex regulation. The authors show that human irisin is similar to the mouse hormone and that it circulates in the range previously reported. Although irisin circulates at low levels (nanograms), this range is comparable to that observed for other important biological hormones such as insulin. Furthermore, the investigators developed a protocol, that does not rely on antibodies, to precisely measure how much irisin increases in people after exercise.

"The data are compelling and clearly demonstrate the existence of irisin in circulation," says endocrinologist Francesco Celi of the Virginia Commonwealth University Medical Center, who was not involved with the study. "Importantly, the authors provide a precise and reproducible protocol to measure irisin." He adds that further studies are necessary to fully understand how the hormone works in humans, specifically how it relates to brown and beige fat tissue and energy use.

Irisin's discovery in 2012 was exciting because scientists had potentially found one reason why exercise keeps us healthy. When irisin levels were increased in mice, their blood and metabolism improved. Results from human studies are still mixed as to what kinds of exercise raise irisin, but data suggest that high-intensity training protocols are particularly effective. The protocol described in the Cell Metabolism paper is likely to help such studies, as it is the most precise way to measure the hormone to date.

The authors point out one caveat in their methods--that some irisin is lost during sample preparation, and therefore the amount of irisin detected is, if anything, a slight underestimation. The technology is also expensive and requires specific mass spectrometry instruments. However, future refinement of this work should lead to more scalable protocols. "Spiegelman and colleagues have unequivocally shown that the "mythical" irisin peptide is produced as a result of exercise," says chemical physiologist John Yates of The Scripps Research Institute, also not affiliated with the work. "This data should settle the controversy surrounding the existence of irisin and its increase in blood as a function of exercise."

###

This work is funded by the JPB Foundation and the National Institutes of Health

####

About Cell Press
Cell Metabolism, published by Cell Press, is a monthly journal that publishes reports of novel results in metabolic biology, from molecular and cellular biology to translational studies. The journal aims to highlight work addressing the molecular mechanisms underlying physiology and homeostasis in health and disease. For more information, please visit www.cell.com/cell-metabolism. To receive media alerts for Cell Metabolism or other Cell Press journals, contact .

For more information, please click here

Contacts:
Joseph Caputo

617-397-2802

Copyright © Cell Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project