Home > Press > Shaping the hilly landscapes of a semi-conductor nanoworld
![]() |
Abstract:
A new study reveals how hexagonal-patterned, self-organised hill structures emerge in 2D at the nanoscale due to redeposition following semi-conductor bombardment with low-energy ions.
Nanoscale worlds sometimes resemble macroscale roller-coaster style hills, placed at the tip of a series of hexagons. Surprisingly, these nanohills stem from the self-organisation of particles - the very particles that have been eroded and subsequently redeposited following the bombardment of semi-conductors with ion beams. Now, a new theoretical study constitutes the first exhaustive investigation of the redeposition effect on the evolution of the roughening and smoothing of two-dimensional surfaces bombarded by multiple ions. The results demonstrate that the redeposition can indeed act as stabilising factor during the creation of the hexagonally arranged dot patterns observed in experiments. These findings by Christian Diddens from the Eindhoven University of Technology, in the Netherlands, and Stefan Linz, from Munster University, Germany, have been published in a study published in EPJ B.
To calculate multiple simulations of redeposition within reasonable computation times, the authors have developed an elaborate new highly efficient algorithm that combines established erosion models with a redeposition model. The latter made it possible to approximate the entire microscopic redeposition dynamics as a function of the relative height and the local slope of a coarse-grained surface. This approach is also supplemented by a new numerical algorithm to calculate precisely how the matter lifted by the ion beams is subsequently redeposited.
This led to the realisation that eroded particles predominantly redeposit in the vicinity of the valleys, whereas almost no particles reattach at the hilltops. Overall, they found that the redeposition mechanism can contribute towards the formation of stable hexagonal patterns. They also confirmed that the aspect ratio of the well-ordered structures resulting from numerical simulation is comparable with experimental findings. This means that the reattachment of eroded particles can play an important role in the observed nanostructures formations. At the same, they comprehensively investigated the distribution of redepositing particles on patterned surfaces.
Full bibliographic information
C. Diddens and S. J. Linz (2015), Continuum modeling of particle redeposition during ion-beam erosion, Eur. Phys. J. B 88:190, DOI: 10.1140/epjb/e2015-60468-7
####
About Springer Science+Business Media
Springer Science+Business Media (www.springer.com) is a leading global scientific publisher, providing researchers in academia, scientific institutions and corporate R&D departments with quality content via innovative information products and services. Springer is also a trusted local-language publisher in Europe – especially in Germany and the Netherlands – primarily for physicians and professionals working in the automotive, transport and healthcare sectors. Roughly 2,000 journals and more than 7,000 new books are published by Springer each year, and the group is home to the world’s largest STM eBook collection, as well as the most comprehensive portfolio of open access journals. Springer employs nearly 6,200 individuals across the globe and in 2011 generated sales of approximately EUR 875 million.
For more information, please click here
Contacts:
Sabine Lehr
Springer
Physics Editorial Department
tel +49-6221-487-8336
Joan Robinson
+49-6221-487-8130
Copyright © AlphaGalileo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Materials/Metamaterials/Magnetoresistance
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |