Home > Press > Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team
Schematic of the molecular junction created using asymmetric area electrodes which functions as a diode, allowing current to flow in one direction only. CREDIT: courtesy of Berkeley Lab and Columbia University |
Abstract:
A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular Foundry, a U.S. Department of Energy (DOE) Office of Science User Facility, the team used a combination of gold electrodes and an ionic solution to create a single-molecule diode that outperforms the best of its predecessors by a factor of 50.
"Using a single symmetric molecule, an ionic solution and two gold electrodes of dramatically different exposed surface areas, we were able to create a diode that resulted in a rectification ratio, the ratio of forward to reverse current at fixed voltage, in excess of 200, which is a record for single-molecule devices," says Jeff Neaton, Director of the Molecular Foundry, a senior faculty scientist with Berkeley Lab's Materials Sciences Division and the Department of Physics at the University of California Berkeley, and a member of the Kavli Energy Nanoscience Institute at Berkeley (Kavli ENSI).
"The asymmetry necessary for diode behavior originates with the different exposed electrode areas and the ionic solution," he says. "This leads to different electrostatic environments surrounding the two electrodes and superlative single-molecule device behavior."
With "smaller and faster" as the driving mantra of the electronics industry, single-molecule devices represent the ultimate limit in electronic miniaturization. In 1974, molecular electronics pioneers Mark Ratner and Arieh Aviram theorized that an asymmetric molecule could act as a rectifier, a one-way conductor of electric current. Since then, development of functional single-molecule electronic devices has been a major pursuit with diodes - one of the most widely used electronic components - being at the top of the list.
A typical diode consists of a silicon p-n junction between a pair of electrodes (anode and cathode) that serves as the "valve" of an electrical circuit, directing the flow of current by allowing it to pass through in only one "forward" direction. The asymmetry of a p-n junction presents the electrons with an "on/off" transport environment. Scientists have previously fashioned single-molecule diodes either through the chemical synthesis of special asymmetric molecules that are analogous to a p-n junction; or through the use of symmetric molecules with different metals as the two electrodes. However, the resulting asymmetric junctions yielded low rectification ratios, and low forward current. Neaton and his colleagues at Columbia University have discovered a way to address both deficiencies.
"Electron flow at molecular length-scales is dominated by quantum tunneling," Neaton explains. "The efficiency of the tunneling process depends intimately on the degree of alignment of the molecule's discrete energy levels with the electrode's continuous spectrum. In a molecular rectifier, this alignment is enhanced for positive voltage, leading to an increase in tunneling, and is reduced for negative voltage. At the Molecular Foundry we developed an approach to accurately compute energy-level alignment and tunneling probability in single-molecule junctions. This method allowed myself and Zhenfei Liu to understand the diode behavior quantitatively."
In collaboration with Columbia University's Latha Venkataraman and Luis Campos and their respective research groups, Neaton and Liu fabricated a high-performing rectifier from junctions made of symmetric molecules with molecular resonance in nearly perfect alignment with the Fermi electron energy levels of the gold electrodes. Symmetry was broken by a substantial difference in the size of the area on each gold electrode that was exposed to the ionic solution. Owing to the asymmetric electrode area, the ionic solution, and the junction energy level alignment, a positive voltage increases current substantially; a negative voltage suppresses it equally significantly.
"The ionic solution, combined with the asymmetry in electrode areas, allows us to control the junction's electrostatic environment simply by changing the bias polarity," Neaton says. "In addition to breaking symmetry, double layers formed by ionic solution also generate dipole differences at the two electrodes, which is the underlying reason behind the asymmetric shift of molecular resonance. The Columbia group's experiments showed that with the same molecule and electrode setup, a non-ionic solution yields no rectification at all."
The Berkeley Lab-Columbia University team believes their new approach to a single-molecule diode provides a general route for tuning nonlinear nanoscale-device phenomena that could be applied to systems beyond single-molecule junctions and two-terminal devices.
"We expect the understanding gained from this work to be applicable to ionic liquid gating in other contexts, and mechanisms to be generalized to devices fabricated from two-dimensional materials," Neaton says. "Beyond devices, these tiny molecular circuits are petri dishes for revealing and designing new routes to charge and energy flow at the nanoscale. What is exciting to me about this field is its multidisciplinary nature - the need for both physics and chemistry - and the strong beneficial coupling between experiment and theory.
"With the increasing level of experimental control at the single-molecule level, and improvements in theoretical understanding and computational speed and accuracy, we're just at the tip of the iceberg with what we can understand and control at these small length scales."
Neaton, Venkataraman and Campos are the corresponding authors of a paper describing this research in Nature Nanotechnology. The paper is titled "Single-molecule diodes with high rectification ratios through environmental control." Other co-authors are Brian Capozzi, Jianlong Xia, Olgun Adak, Emma Dell, Zhen-Fei Liu and Jeffrey Taylor.
###
This research was primarily supported by the DOE Office of Science and the National Science Foundation. Portions of the computation work were performed at National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility also hosted at Berkeley Lab.
####
For more information, please click here
Contacts:
Lynn Yarris
510-486-5375
Copyright © DOE/Lawrence Berkeley National Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Laboratories
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Finding quantum order in chaos May 17th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||