Home > Press > Programming adult stem cells to treat muscular dystrophy and more by mimicking nature
![]() |
Scientists coaxed the development of this muscle cell from an adult stem cell.
Credit: American Chemical Society |
Abstract:
Stem cells hold great potential for addressing a variety of conditions from spinal cord injuries to cancer, but they can be difficult to control. Scientists are now reporting in the journal ACS Nano a new way to mimic the body's natural approach to programming these cells. Using this method, they successfully directed adult stem cells to turn specifically into muscle, which could potentially help treat patients with muscular dystrophy.
In the 1990s, scientists first isolated human embryonic stem cells, which can turn into any kind of cell in the body, and the promise of a new way to treat diseases emerged. Since then, scientists have also discovered adult stem cells in a number of organs in the body, including the brain, lungs and skin, that can turn into a limited number of cell types. However, harnessing these special cells to treat disease has been difficult. One of the main obstacles has been figuring out how to control them. Ki-Bum Lee and colleagues wanted to tackle this challenge.
The researchers created an artificial version of a transcription factor -- a protein critical to orchestrating stem-cell differentiation -- using gold nanoparticles. They added small molecules to mimic the structure and function of the natural transcription factor that induces muscle-cell growth. The synthetic proteins, called NanoScript, successfully coaxed stem cells derived from fat tissue to become muscle. The researchers say they can potentially design their NanoScript system to grow other cell types, too.
###
The authors acknowledge funding from the National Institutes of Health, the N.J. Commission on Spinal Cord Research and the Rutgers Busch Biomedical Grant Program.
####
About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 158,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.
For more information, please click here
Contacts:
Michael Bernstein
202-872-6042
Ki-Bum Lee, Ph.D.
Department of Chemistry and Chemical Biology
Rutgers, The State University of New Jersey
Piscataway, NJ 08854
Copyright © American Chemical Society
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
DOWNLOAD FULL-TEXT ARTICLE - "Inducing Stem Cell Myogenesis Using NanoScript"
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Nanobiotechnology
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |