Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Drawing a line between quantum and classical world: Bell's Inequality fails as a test of the boundary

Abstract:
Quantum theory is one of the great achievements of 20th century science, yet physicists have struggled to find a clear boundary between our everyday world and what Albert Einstein called the "spooky" features of the quantum world, including cats that could be both alive and dead, and photons that can communicate with each other across space instantaneously.

Drawing a line between quantum and classical world: Bell's Inequality fails as a test of the boundary

Rochester, NY | Posted on July 21st, 2015

For the past 60 years, the best guide to that boundary has been a theorem called Bell's Inequality, but now a new paper shows that Bell's Inequality is not the guidepost it was believed to be, which means that as the world of quantum computing brings quantum strangeness closer to our daily lives, we understand the frontiers of that world less well than scientists have thought.

In the new paper, published in the July 20 edition of Optica, University of Rochester researchers show that a classical beam of light that would be expected to obey Bell's Inequality can fail this test in the lab, if the beam is properly prepared to have a particular feature: entanglement.

Not only does Bell's test not serve to define the boundary, the new findings don't push the boundary deeper into the quantum realm but do just the opposite. They show that some features of the real world must share a key ingredient of the quantum domain. This key ingredient is called entanglement, exactly the feature of quantum physics that Einstein labeled as spooky. According to Joseph Eberly, professor of physics and one of the paper's authors, it now appears that Bell's test only distinguishes those systems that are entangled from those that are not. It does not distinguish whether they are "classical" or quantum. In the forthcoming paper the Rochester researchers explain how entanglement can be found in something as ordinary as a beam of light.

Eberly explained that "it takes two to tangle." For example, think about two hands clapping regularly. What you can be sure of is that when the right hand is moving to the right, the left hand is moving to the left, and vice versa. But if you were asked to guess without listening or looking whether at some moment the right hand was moving to the right, or maybe to the left, you wouldn't know. But you would still know that whatever the right hand was doing at that time, the left hand would be doing the opposite. The ability to know for sure about a common property without knowing anything for sure about an individual property is the essence of perfect entanglement.

Eberly added that many think of entanglement as a quantum feature because "Schrodinger coined the term 'entanglement' to refer to his famous cat scenario." But their experiment shows that some features of the "real" world must share a key ingredient of Schrodinger's Cat domain: entanglement.

The existence of classical entanglement was pointed out in 1980, but Eberly explained that it didn't seem a very interesting concept, so it wasn't fully explored. As opposed to quantum entanglement, classical entanglement happens within one system. The effect is all local: there is no action at a distance, none of the "spookiness."

With this result, Eberly and his colleagues have shown experimentally "that the border is not where it's usually thought to be, and moreover that Bell's Inequalities should no longer be used to define the boundary."

###

Eberly's co-authors are Xiao-Feng Qian, Bethany Little and Professor John C. Howell.

The authors acknowledge funding from the Defense Advanced Research Projects Agency (DARPA) and the National Science Foundation (NSF).

####

For more information, please click here

Contacts:
Leonor Sierra

585-276-6264

Copyright © University of Rochester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Physics

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Quantum nanoscience

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project