Home > Press > Trapped light orbits within an intriguing material
![]() |
Patterns of orbiting light predicted for spheroids of hexagonal boron nitride illuminated with a dipole source just above their north poles. These are false-color plots of predicted hot spots of enhanced electrical fields. Magenta lines trace the periodic orbits on the surfaces set up by particular frequencies. CREDIT: Fogler group, UC San Diego |
Abstract:
Light becomes trapped as it orbits within tiny granules of a crystalline material that has increasingly intrigued physicists, a team led by University of California, San Diego, physics professor Michael Fogler has found.
Hexagonal boron nitride, stacked layers of boron and nitrogen atoms arranged in a hexagonal lattice, has recently been found to bend electromagnetic energy in unusual and potentially useful ways.
Last year Fogler and colleagues demonstrated that light could be stored within nanoscale granules of hexagonal boron nitride. Now Fogler's research group has published a new paper in the journal Nano Letters that elaborates how this trapped light behaves inside the granules.
The particles of light, called phonon polaritons, disobey standard laws of reflection as they bounce through the granules, but their movement isn't random. Polariton rays propagate along paths at fixed angles with respect to the atomic structure of the material, Folger's team reports. That can lead to interesting resonances.
"The trajectories of the trapped polariton rays are very convoluted in most instances," Fogler said. "However, at certain 'magic' frequencies they can become simple closed orbits."
When that happens "hot spots" of strongly enhanced electrical fields can emerge. Fogler's group found those can form elaborate geometric patterns in granules of spheroidal shape.
The polaritons are not only particles but also waves that form interference patterns. When overlaid on the hot contours of enhanced electrical fields, these create strikingly beautiful images.
"They resemble Fabergé eggs, the gem-encrusted treasures of the Russian tsars," Fogler observed.
Beyond creating beautiful images, their analysis illustrates the way light is stored inside the material. The patterns and the magic frequencies are determined not by the size of the spheroid but its shape, that is, the ratio of its girth to length. The analysis revealed that a single parameter determines the fixed angle along which polariton rays propagate with respect to the surface of the spheroids.
Scientists are beginning to find practical uses for materials such as hexagonal boron nitride that manipulate light in usual ways. The theory this work informed could guide the development of applications such as nanoresonators for high-resolution color filtering and spectral imaging, hyperlenses for subdiffractional imaging, or infrared photon sources.
The analysis provides a theoretical explanation for earlier observations of trapped light. Fogler and colleagues suggest several experiments that could confirm their prediction of orbiting light using advanced optical techniques, some of which are underway, Fogler said. "The experimental quest to detect orbiting polaritons has already begun."
###
Additional authors include Zhiyuan Sun, a graduate student in Fogler's research group, Angel Guttiérrez-Rubio of the Spanish National Research Council (CSIC) who contributed to the project while a visiting scholar at UC San Diego, and Dimitri Basov, a professor of physics at UC San Diego. The UC Office of the President, U.S. Department of Energy, Spanish Ministry of Economy and Competitiveness, and European Research Council supported the work.
####
For more information, please click here
Contacts:
Susan Brown
858-246-0161
Copyright © University of California - San Diego
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Imaging
Turning up the signal November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Photonics/Optics/Lasers
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Research partnerships
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |