Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists Apply Magnetic Nanoparticles to Eliminate Cancerous Cells

Abstract:
Iranian researchers from University of Tehran synthesized magnetic nanoparticles that showed appropriate function in treating cancer.

Scientists Apply Magnetic Nanoparticles to Eliminate Cancerous Cells

Tehran, Iran | Posted on July 10th, 2015

The nanoparticles have been produced through a simple and cost-effective method.

Injection and delivery of magnetic nanoparticles to the cancer tissue is one of the methods to cure and eliminate cancerous cells. Use of alternative magnetic field outside the patient's body increases the temperature of magnetic nanoparticles after the placement of these particles inside the body and their contact with cancerous and a few healthy cells. The heat caused by increasing the temperature eliminates cancerous cells. This method is known as hyperthermia.

In this research, ceramic nanoparticles of lanthanum manganite doped with strontium (La8Sr2MnO3) have been produced through mechanical milling and by using thermal operation.

One of the most important parts of this research is the adjustment of Curie temperature. Curie temperature is the temperature in which magnetic nanoparticles lose their magnetic properties and their temperature does not increase. Therefore, they do not create more heat although magnetic field is imposed. Since cancerous cells are eliminated at lower temperatures in comparison with healthy ones, the temperature should be adjusted in a way that is higher than the temperature for the elimination of cancerous cells while it is lower than the temperature to harm healthy cells.

According to the researchers, Curie temperature of the magnetic nanoparticles synthesized in this research is 46°C. At this temperature, cancerous cells are eliminated while healthy ones are not harmed. This characteristic is a result of changing the size of the synthesized nanoparticles. The change in the size of the synthesized nanoparticles depends on the raw materials and the synthesis method.

Results of the research have been published in Materials Characterization, vol. 106, issue 1, 2015, pp. 78-85.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Cancer

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

New nanoparticle could make cancer treatment safer, more effective: Scientists create a tiny particle for use with focused ultrasound on solid tumors May 16th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project