Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Superconductor could be realized in a broken Lorenz invariant theory

Abstract:
Today theoretical physicists are facing the difficulty that General Relativity is not (pertubatively) renormalizable, and find that it is very hard to construct the quantum theory of gravity with LI. A possible solution is to break the LI in the ultraviolet (UV) region, so that the theory is renormalizable and unitary. However, the invariance should be recovered in the infrared (IR), so that all of the gravitational experiments in the IR can be satisfied. According to this idea, Horava proposed a Horava-Lifshitz (HL) gravity without LI [P. Horava, Phys. Rev. D 79 (2009) 084008], and recently it was shown that LI can be broken at very high energy scale [K. Lin, S. Mukohyama, A. Wang and T. Zhu, Phys. Rev. D 89 (2014) 084022], without causing conflict with observations [M. Pospelov and C. Tamarit, J. High Energy Phys. 01 (2014) 048]. Therefore, it would be very interesting to study effects due to the broken LI, and we find that it is possible to realize the holographic superconductor in HL gravity.

Superconductor could be realized in a broken Lorenz invariant theory

Singapore | Posted on July 7th, 2015

This work was a generalization of the AdS/CFT correspondence proposed by Hartnoll, Herzog and Horowitz [S. A. Hartnoll, C. P. Herzog and G. T. Horowitz, Phys.Rev.Lett. 101 (2008) 031601]. They used AdS/CFT correspondence to explain the phase change in black hole spacetime, and successfully obtained the holographic superconductor curve lines of a black hole. After considering the holographic superconductor in the Horava-Lifshitz gravity, we found the effect from the broken LI, which can influence the conductivity and condensate curve lines, but the holographic superconductor still can be realized in gravity without LI.

###

This work is supported in part by FAPESP No. 2012/08934-0 (EA, KL); CNPq (EA, KL); DOE Grant, DE-FG02-10ER41692 (AW); Ciencia Sem Fronteiras, No. 004/2013 - DRI/CAPES (AW); and NSFC No. 11375153 (AW).

####

About World Scientific
World Scientific Publishing Company was established in 1981 with only 5 employees in a tiny office. Today, the company employs more than 200 staff at its headquarters in Singapore and 450 globally. It has offices in New Jersey, London, Geneva, Hong Kong, Taipei, Beijing, Shanghai, Tianjin and Chennai. In about 3 decades, it has established itself as one of the leading scientific publishers in the world, and the largest international scientific publisher in the Asia-Pacific region.

World Scientific publishes about 500 new titles a year and 120 journals in various fields. Many of its books are recommended texts adopted by renowned institutions such as Harvard University, California Institute of Technology, Stanford University and Princeton University.

For more information, please click here

Contacts:
Philly Lim

65-646-65775

authors of this paper:
Kai Lin
Universidade de Sao Paulo


E. Abdalla
Universidade de Sao Paulo

Copyright © World Scientific

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper can be found in the International Journal of Modern Physics D.:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Superconductivity

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project