Home > Press > Chitosan coated, chemotherapy packed nanoparticles may target cancer stem cells
Xiaoming He |
Abstract:
Nanoparticles packed with a clinically used chemotherapy drug and coated with an oligosaccharide derived from the carapace of crustaceans might effectively target and kill cancer stem-like cells, according to a recent study led by researchers at The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James). Cancer stem-like cells have characteristics of stem cells and are present in very low numbers in tumors. They are highly resistant to chemotherapy and radiation and are believed to play an important role in tumor recurrence. This laboratory and animal study showed that nanoparticles coated with the oligosaccharide called chitosan and encapsulating the chemotherapy drug doxorubicin can target and kill cancer stem-like cells six times more effectively than free doxorubicin.
The study is reported in the journal ACS Nano.
"Our findings indicate that this nanoparticle delivery system increases the cytotoxicity of doxorubicin with no evidence of systemic toxic side effects in our animal model," says principal investigator Xiaoming (Shawn) He, PhD, associate professor of Biomedical Engineering and a member of the OSUCCC - James Translational Therapeutics Program.
"We believe that chitosan-decorated nanoparticles could also encapsulate other types of chemotherapy and be used to treat many types of cancer."
This study showed that chitosan binds with a receptor on cancer stem-like cells called CD44, enabling the nanoparticles to target the malignant stem-like cells in a tumor.
The nanoparticles were engineered to shrink, break open, and release the anticancer drug under the acidic conditions of the tumor microenvironment and in tumor-cell endosomes and lysosomes, which cells use to digest nutrients acquired from their microenvironment.
He and his colleagues conducted the study using models called 3D mammary tumor spheroids (i.e., mammospheres) and an animal model of human breast cancer.
The study also found that although the drug-carrying nanoparticles could bind to the variant CD44 receptors on cancerous mammosphere cells, they did not bind well to the CD44 receptors that were overexpressed on noncancerous stem cells.
###
Funding from an American Cancer Society Research Scholar Grant (No. 120936-RSG- 11-109-01-CDD) and a Pelotonia postdoctoral fellowship supported this research.
Other researchers involved in this study were Wei Rao, Hai Wang, Jianfeng Han, Shuting Zhao, Jenna Dumbleton, Pranay Agarwal, Jianhua Yu and Debra L. Zynger of Ohio State; Wujie Zhang of Milwaukee School of Engineering; Gang Zhao of University of Science and Technology of China; and Xiongbin Lu of The University of Texas MD Anderson Cancer Center.
####
About Ohio State University Wexner Medical Center
The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute strives to create a cancer-free world by integrating scientific research with excellence in education and patient-centered care, a strategy that leads to better methods of prevention, detection and treatment. Ohio State is one of only 41 National Cancer Institute (NCI)-designated Comprehensive Cancer Centers and one of only four centers funded by the NCI to conduct both phase I and phase II clinical trials. The NCI recently rated Ohio State's cancer program as "exceptional," the highest rating given by NCI survey teams. As the cancer program's 306-bed adult patient-care component, The James is a "Top Hospital" as named by the Leapfrog Group and one of the top cancer hospitals in the nation as ranked by U.S.News & World Report.
For more information, please click here
Contacts:
Darrell E. Ward
614-293-3737
Copyright © Ohio State University Wexner Medical Center
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Cancer
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||