Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Soft core, hard shell -- the latest in nanotechnology

Picture: Dr. Wolfgang G. KreylingSource: HMGU
Picture: Dr. Wolfgang G. Kreyling

Source: HMGU

Abstract:
Nanoparticles are the smallest particles capable of reaching virtually all parts of the body. Researchers use various approaches to test ways in which nanoparticles could be used in medicine - for instance, to deliver substances to a specific site in the body such as a tumor. For this purpose, nanoparticles are generally coated with organic materials because their surface quality plays a key role in determining further targets in the body. If they have a water-repellent shell, nanoparticles are quickly identified by the body's immune system and eliminated.

Soft core, hard shell -- the latest in nanotechnology

Muenchen, Germany | Posted on June 22nd, 2015

How gold particles wander through the body

The team of scientists headed by Dr. Wolfgang Kreyling, who is now an external scientific advisor at the Institute of Epidemiology II within the Helmholtz Zentrum Muenchen, and Prof. Wolfgang Parak from the University of Marburg, succeeded for the first time in tracking the chronological sequence of such particles in an animal model. To this end, they generated tiny 5 nm gold nanoparticles radioactively labeled with a gold isotope*. These were also covered with a polymer shell and tagged with a different radioactive isotope. According to the researchers, this was, technically speaking, a very demanding nanotechnological step.

After the subsequent intravenous injection of the particles, however, the team observed how the specially applied polymer shell disintegrated. "Surprisingly, the particulate gold accumulated mainly in the liver," Dr. Kreyling recalls. "In contrast, the shell molecules reacted in a significantly different manner, distributing themselves throughout the body." Further analyses conducted by the scientists explained the reason for this: so-called proteolytic enzymes** in certain liver cells appear to separate the particles from their shell. According to the researchers, this effect was hitherto unknown in vivo, since up to now the particle-conjugate had only been tested in cell cultures, where this effect had not been examined sufficiently thoroughly.

"Our results show that even nanoparticle-conjugates*** that appear highly stable can change their properties when deployed in the human body," Dr. Kreyling notes, evaluating the results. "The study will thus have an influence on future medical applications as well as on the risk evaluation of nanoparticles in consumer products and in science and technology."

###

Further information

Background

* Isotopes are types of atoms which have different mass numbers but which represent the same element.

** Proteolytic enzymes split protein structures and are used, for example, to nourish or detoxify the body.

*** Conjugates are several types of molecules that are bound in one particle.

Original Publication:

Kreyling, W. et al. (2015). In vivo integrity of polymer-coated gold nanoparticles, Nature Nanotechnology DOI: 10.1038/nnano.2015.111

####

About Helmholtz Zentrum Muenchen - German Research Center for Environmental Health
As German Research Center for Environmental Health, Helmholtz Zentrum Muenchen pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes mellitus and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum Muenchen has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. Helmholtz Zentrum Muenchen is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members.

The Institute of Epidemiology II (EPI II) focuses on the assessment of environmental and lifestyle risk factors which jointly affect major chronic diseases such as diabetes, heart disease and mental health. Research builds on the unique resources of the KORA cohort, the KORA myocardial infarction registry, and the KORA aerosol measurement station. Aging-related phenotypes have been added to the KORA research portfolio within the frame of the Research Consortium KORA-Age. The institute's contributions are specifically relevant for the population as modifiable personal risk factors are being researched that could be influenced by the individual or by improving legislation for the protection of public health.

For more information, please click here

Contacts:
Contact for the media:

Department of Communication
Helmholtz Zentrum Muenchen - German Research Center for Environmental Health (GmbH)
Ingolstaedter Landstr. 1
85764 Neuherberg
Phone: +49-(0)89-3187-2238
Fax: +49 89-3187-3324


Scientific contact at Helmholtz Zentrum Muenchen:

Dr. Wolfgang G. Kreyling
Helmholtz Zentrum Muenchen
German Research Center for Environmental Health (GmbH)
External Scientific Advisor
Institute of Epidemiology II,
Ingolstaedter Landstr. 1
85764 Neuherberg

Copyright © Helmholtz Zentrum Muenchen - German Research Center for Envi

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Cancer

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project