Home > Press > On the Surface of Polymers
Plasma treated PTFE surface |
Abstract:
Henniker Plasma, a UK based supplier of plasma surface treatment equipment and processes, document the advantages of plasma treatment to improve adhesion on a wide range of engineering polymers.
Engineering polymers, such as PEEK, POM, polyamides and PTFE have witnessed a remarkable growth in their use in recent years in medical product manufacturing, such as catheters, micro-catheters, nasogastric feeding tubes and endotracheal tubes to name but a few. They are typically chosen for unique properties which include resistance to chemicals, high strength to weight ratio and of course relatively low cost. However, there are fundamental differences between polymers and other engineering materials which create unique technical challenges in a production environment.
One important property is the characteristic low surface energy of polymers and the resulting intrinsically poor adhesion characteristics. This is an important obstacle in achieving reliable glue joints and PAD printing steps, where various types of markings must be permanent. Various methods of improving adhesion are available but often don’t lend themselves to production settings and frequently involve the use of harsh and environmentally unfriendly chemicals to physically attack and etch the surface of the material. Plasma surface modification offers a reliable and environmentally friendly alternative surface preparation for most engineering polymers.
Plasmas can be a vacuum types (batch) or atmospheric types (in-line) and contain reactive gas species which, by careful choice of gas type and process parameters, can be used to increase the surface energy of a wide range of engineering polymers, and in doing so significantly improve wetting characteristics and therefore adhesion characteristics.
In-line atmospheric plasma surface treatment has been successfully demonstrated to increase the surface energy of PEEK from 35mN/m to >72mN/m, ensuring permanent PAD print adhesion. The treatment is active on PEEK for several weeks and so parts can be stored until needed.
For PTFE catheters, air is ineffective due to the strength of the C-F bond. Batch processes are preferred which allow different plasma gases to be used and which are more effective in fluorine extraction from the surface. This process also increases the effective surface area which in turn improves ink adhesion as shown in the SEM images below for untreated and plasma-treated PTFE. The surface energy of PTFE is raised from 18mN/m to >72mN/m in this case also.
Conclusions
Both batch and in-line plasma treatments offer a reliable and repeatable surface preparation method for improving adhesion to a wide range of engineering polymers used in medical device manufacture. Applications include gluing and PAD printing of catheter tubes for example.
####
For more information, please click here
Contacts:
Unit B3 Trident Business Park
Daten Avenue
Warrington WA3 6AX England
Tel: +44(0)1925 830 771
Fax: +44(0)1925 800 035
Copyright © Henniker Plasma
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
3D & 4D printing/Additive-manufacturing
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Fiber sensing scientists invent 3D printed fiber microprobe for measuring in vivo biomechanical properties of tissue and even single cell February 10th, 2023
3D-printed decoder, AI-enabled image compression could enable higher-res displays December 9th, 2022
Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||