Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers grind nanotubes to get nanoribbons: Rice-led experiments demonstrate solid-state carbon nanotube 'templates'

Researchers led by materials scientists at Rice University discovered that altering carbon nanotubes with carboxyl (COOH) and hydroxyl (OH) groups and grinding them together produces nanoribbons. The find could lead to novel nanostructured products with specific properties. Credit: Mohamad Kabbani/Rice University
Researchers led by materials scientists at Rice University discovered that altering carbon nanotubes with carboxyl (COOH) and hydroxyl (OH) groups and grinding them together produces nanoribbons. The find could lead to novel nanostructured products with specific properties.

Credit: Mohamad Kabbani/Rice University

Abstract:
A simple way to turn carbon nanotubes into valuable graphene nanoribbons may be to grind them, according to research led by Rice University.

Researchers grind nanotubes to get nanoribbons: Rice-led experiments demonstrate solid-state carbon nanotube 'templates'

Houston, TX | Posted on June 15th, 2015

The trick, said Rice materials scientist Pulickel Ajayan, is to mix two types of chemically modified nanotubes. When they come into contact during grinding, they react and unzip, a process that until now has depended largely on reactions in harsh chemical solutions.

The research by Ajayan and his international collaborators appears in Nature Communications.

To be clear, Ajayan said, the new process is still a chemical reaction that depends on molecules purposely attached to the nanotubes, a process called functionalization. The most interesting part to the researchers is that a process as simple as grinding could deliver strong chemical coupling between solid nanostructures and produce novel forms of nanostructured products with specific properties.

"Chemical reactions can easily be done in solutions, but this work is entirely solid state," he said. "Our question is this: If we can use nanotubes as templates, functionalize them and get reactions under the right conditions, what kinds of things can we make with a large number of possible nanostructures and chemical functional groups?"

The process should enable many new chemical reactions and products, said Mohamad Kabbani, a graduate student at Rice and lead author of the paper. "Using different functionalities in different nanoscale systems could revolutionize nanomaterials development," he said.

Highly conductive graphene nanoribbons, thousands of times smaller than a human hair, are finding their way into the marketplace in composite materials. The nanoribbons boost the materials' electronic properties and/or strength.

"Controlling such structures by mechano-chemical transformation will be the key to find new applications," said co-author Thalappil Pradeep, a professor of chemistry at the Indian Institute of Technology Chennai. "Soft chemistry of this kind can happen in many conditions, contributing to better understanding of materials processing."

In their tests, the researchers prepared two batches of multi-walled carbon nanotubes, one with carboxyl groups and the other with hydroxyl groups attached. When ground together for up to 20 minutes with a mortar and pestle, the chemical additives reacted with each other, triggering the nanotubes to unzip into nanoribbons, with water as a byproduct.

"That serendipitous observation will lead to further systematic studies of nanotubes reactions in solid state, including ab-initio theoretical models and simulations," Ajayan said. "This is exciting."

The experiments were duplicated by participating labs at Rice, at the Indian Institute of Technology and at the Lebanese American University in Beirut. They were performed in standard lab conditions as well as in a vacuum, outside in the open air and at variable humidity, temperatures, times and seasons.

The researchers who carried out the collaboration on three continents still don't know precisely what's happening at the nanoscale. "It is an exothermic reaction, so the energy's enough to break up the nanotubes into ribbons, but the details of the dynamics are difficult to monitor," Kabbani said. "There's no way we can grind two nanotubes in a microscope and watch it happen. Not yet, anyway."

But the results speak for themselves.

"I don't know why people haven't explored this idea, that you can control reactions by supporting the reactants on nanostructures," Ajayan said. "What we've done is very crude, but it's a beginning and a lot of work can follow along these lines."

Co-authors are Rice graduate students Chandra Sekhar Tiwary, Sehmus Ozden and Yongji Gong; Pedro Autreto, Gustavo Brunetto and Professor Douglas Galvao of the State University of Campinas, Brazil; Anirban Som and K.R. Krishnadas of the Indian Institute of Technology Madras; Robert Vajtai, a senior faculty fellow at Rice, and Ahmad Kabbani, an adjunct faculty member at Rice and a professor of chemistry at the Lebanese American University, Beirut. Ajayan is chair of Rice's Department of Materials Science and NanoEngineering, the Benjamin M. and Mary Greenwood Anderson Professor in Engineering and a professor of chemistry.

The research was supported by the Air Force Office of Scientific Research and its Multidisciplinary University Research Initiative; the Brazilian National Council for Scientific and Technological Development, CAPES (Coordination of Improvement of Higher Education Personnel) and the São Paulo Research Foundation; the Center for Computational Engineering and Sciences at the State University of Campinas, and the Nano Mission, Government of India.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,888 undergraduates and 2,610 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked among some of the top schools for best quality of life by the Princeton Review and for best value among private universities by Kiplinger's Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the paper at:

Ajayan Research Group:

Rice Department of Materials Science and NanoEngineering:

Related News Press

Chemistry

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Graphene/ Graphite

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project