Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > National MagLab achieves record high field of 27 Tesla in an all-superconducting magnet using Oxford Instruments’ 15 Tesla outsert system

Abstract:
Oxford Instruments is pleased to announce that its high field magnet system recently commissioned at the National High Magnetic Field Laboratory in Tallahassee, Florida (National MagLab) has been used in prototype testing that has already reached a new record high field: 27 Tesla in an all-superconducting magnet. The so-called “outsert” magnet system from Oxford Instruments generates 15 T within a very large magnet bore of 250 mm, operating at 4.2 Kelvin. The additional 12 T came from high temperature superconducting (HTS) coils developed by the National MagLab. The 27 T result is a significant milestone on the way to the National MagLab’s goal of a 32 T all-superconducting magnet.

National MagLab achieves record high field of 27 Tesla in an all-superconducting magnet using Oxford Instruments’ 15 Tesla outsert system

Abingdon, UK | Posted on June 12th, 2015

Achieving this high field in an all-superconducting magnet is a major step in high field user capability at the National MagLab. When the project is completed in 2016, the National MagLab’s 32 T magnet will be the world's most powerful superconducting magnet available to researchers. It will enable future-leading science, as well as removing the infrastructure requirements and costs associated with the resistive magnets typically used to generate magnetic fields greater than 30 T today.

The prototype HTS coils developed by National MagLab use 4 mm YBCO tape from SuperPower Inc. (Schenectady, NY) and were operated to 265 A in the full Oxford Instruments 15 T outsert magnet, for the combined magnet central field of 27 T at 4.2 K, the normal boiling point of liquid helium.

“This is the highest magnetic field reached in a fully superconducting system, and a world record indeed”, commented Dr Ziad Melhem, Alliances Manager at Oxford Instruments. “This further confirms Oxford Instruments’ world-class capability to develop state of the art high field superconducting magnet systems that are successfully used for such record-breaking projects, which will benefit researchers in both physical and life sciences for years to come”.

Read more at http://www.oxford-instruments.com/news/2015/april/oi-commisions-high-field-outsert-magnet-system and on MagLab’s website at https://nationalmaglab.org/news-events/news/maglab-claims-record-with-novel-superconducting-magnet.

####

About Oxford Instruments NanoScience
Oxford Instruments NanoScience designs, supplies and supports market-leading research tools that enable quantum technologies, new materials and device development in the physical sciences. Our tools support research down to the atomic scale through creation of high performance, cryogen-free low temperature and magnetic environments, based upon our core technologies in low and ultra-low temperatures, high magnetic fields and system integration, with ever-increasing levels of experimental and measurement readiness. Oxford Instruments NanoScience is a part of the Oxford Instruments plc group.

About Oxford Instruments plc

Oxford Instruments designs, supplies and supports high-technology tools and systems with a focus on research and industrial applications. Innovation has been the driving force behind Oxford Instruments' growth and success for over 50 years, and its strategy is to effect the successful commercialisation of these ideas by bringing them to market in a timely and customer-focused fashion.

The first technology business to be spun out from Oxford University, Oxford Instruments is now a global company and is listed on the London Stock Exchange (OXIG). Its objective is to be the leading provider of new generation tools and systems for the research and industrial sectors with a focus on nanotechnology. Its key market sectors include nano-fabrication and nano-materials. The company’s strategy is to expand the business into the life sciences arena, where nanotechnology and biotechnology intersect

This involves the combination of core technologies in areas such as low temperature, high magnetic field and ultra high vacuum environments; Nuclear Magnetic Resonance; X-ray, electron, laser and optical based metrology; atomic force microscopy; optical imaging; advanced growth, deposition and etching.

Oxford Instruments aims to pursue responsible development and deeper understanding of our world through science and technology. Its products, expertise, and ideas address global issues such as energy, environment, security and health.

For more information, please click here

Contacts:
Soma Deshprabhu
Marketing Communications Manager
Oxford Instruments NanoScience
Tubney Woods, Abingdon, Oxon OX13 5QX, UK
Direct dial: +44 (0) 1865 393 813
Tel: +44 (0) 1865 393 200

Copyright © Oxford Instruments NanoScience

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Superconductivity

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project